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Abstract

This paper introduces a time-varying (TV) panel data model with interactive fixed effects

(IFEs) where both the coefficients and factor loadings are allowed to change smoothly over time.

We propose a local version of the least squares and principal component method to estimate the TV

coefficients, TV factor loadings, and common factors simultaneously. We provide a bias-corrected

local least squares estimator for the TV coefficients and establish the limiting distributions and

uniform convergence of the bias-corrected estimators, estimated factors, and factor loadings in the

large N and large T framework. We also propose a BIC-type information criterion to determine

the number of common factors in the IFEs, which is robust to the TV behavior in the coefficients

and factor loadings. Based on the estimates, we propose three test statistics to gauge possible

sources of TV features. We establish the limit null distributions and the asymptotic local power

properties of our tests. Simulations are conducted to evaluate the finite sample performance of

our information criterion, estimates, and tests. We apply our theoretical results to analyze the

Phillips curve using the U.S. state-level unemployment rates and nominal wages, and document

significant TV behavior in both the slope coefficient and factor loadings.
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1 Introduction

Since the seminal works of Pesaran (2006) and Bai (2009), panel data models with interactive fixed

effects (IFEs) have been investigated extensively. See Moon and Weidner (2015, 2017), Chudik and

Pesaran (20015), Lu and Su (2016), Li et al. (2020), among others. The IFEs could be regarded as

a multiplicative form of individual effects and time effects, which allows for common shocks to affect

the cross-sectional units with individual-specific sensitivities. In comparison with the traditional

fixed effects models, the IFEs models not only allow flexible specifications of heterogeneity but also

provide an effective way to model strong cross-sectional dependence, which is an essential feature

of macroeconomic and financial data. Nevertheless, existing studies typically assume that the slope

coefficients and factor loadings are time-invariant, which appears very restrictive given the long time

span for such data. In fact, as technology progresses, preference changes, or economic transition

occurs, the relationship between economic and financial variables may change over time. If a panel

data model fails to account for such a time-varying (TV) behavior, statistical inferences, forecasting,

and policy evaluations based on it can be misleading.

Numerous efforts have been devoted to modeling and testing structural changes in panel data

models over the past decade. For example, De Wachter and Tzavalis (2012) propose a likelihood ratio

test for a single structural break in dynamic panel data models with fixed effects in the large N and

fixed T framework, where N and T denote the dimensions of the cross section and time, respectively.

Qian and Su (2016) estimate multiple structural breaks in panel data models with fixed effects by

adaptive group fused Lasso where N is large and T can be either large or fixed. Li et al. (2017)

study the common correlated effects (CCE) estimation of heterogenous panels with unknown common

breaks in the large N and large T framework; Baltagi et al. (2017) extend the model by allowing

for nonstationary regressors. Apart from modeling, estimating, and testing for structural breaks in

panel data models, the existing literature also investigates the case of smooth structural changes.

Actually, the sources of structural changes, such as preference changes, technological progress, and

institutional transformation, usually take effect gradually over time. Even if some policy switches

occur immediately, it may take some time for economic agents to react. Thus, it is more realistic to

assume smooth changes rather than abrupt breaks in many scenarios. Along this line of research,

Li et al. (2011) introduce a TV functional-coefficient panel data model, Robinson (2012) proposes

a nonparametric trending panel data model, both Chen (2019) and Su et al. (2019) study the

estimation of a TV panel data model with latent group structures, and Chen and Huang (2018)

develop two Hausman-type tests for smooth structural changes in panel data models. However, the

aforementioned works focus on modeling and testing structural changes in panel data models with

the usual additive fixed effects.

Given the appealing advantage of IFEs, some recent studies have considered the model instability

problem of panel data models with IFEs. Li et al. (2016) consider Lasso-type estimation of panel

data models with IFEs and multiple structural breaks in the large N and large T framework. Cheng
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et al. (2019) introduce a regime-switching panel data model with IFEs and develop an expectation

and maximization (EM) algorithm to estimate the unknown parameters. Miao et al. (2020) study

the estimation and inference in a panel threshold model with IFEs and propose a likelihood ratio test

to check the existence of threshold effects. Dong et al. (2021) propose sieve estimation of a varying-

coefficient panel data model with IFEs where the factor loadings are time-invariant. Similarly, Liu

et al. (2019) consider the duple least squares estimation of a TV panel data model with individual-

specific TV coefficients and time-invariant factor loadings. In contrast, Liu et al. (2021) study a TV

panel with functional coefficients for both the regressors and factors and propose a hybrid of kernel

and sieve methods to estimate the model.

In this paper, we model and test smooth structural changes in panel data models with IFEs

under the local smoothing framework. We allow both the slope parameters and factor loadings to

change over time and propose a local version of the least squares and principal component analysis

(PCA) method to estimate the TV slope parameters, TV factor loadings, and unknown common

factors simultaneously. Under the large N and large T framework, we establish the consistency and

limiting distributions of the estimated slope parameters, the common factors, and factor loadings.

Following Su and Wang (2017), we propose a BIC-type information criterion to determine the number

of common factors, which is robust to the existence of structural changes in the slope coefficients and

factor loadings. Based on the estimates, we propose three test statistics to gauge possible sources of

TV features. We construct an L2-distance-based test to check the stability of both slope coefficients

and factor loadings. The basic idea is to estimate the TV panel data models with IFEs via the local

least squares (LLS) method, and compare the estimated residuals with those obtained from the time-

invariant model. If we reject the null hypothesis that both the slope coefficients and factor loadings

are time-invariant, it is valuable to gauge the possible sources of rejection. We further propose

two test statistics to check the stability of the slope coefficients and factor loadings separately. By

construction, all of our tests can capture both smooth and abrupt structural changes, where neither

the number of breaks nor break dates is unknown. The simulation studies show that the proposed

LLS and local PCA method performs well, and our test statistics have reasonable size and excellent

power. Empirically, we apply our modeling and testing framework to the Phillips curve using panel

data of the U.S. state-level unemployment rates and nominal wages, and find significant evidence on

the TV behavior of the Phillips curve and the factor loadings.

The rest of this paper is organized as follows. In Section 2, we introduce a TV panel data

model with TV IFEs and the local PCA estimates of the model parameters. In Section 3, we study

the asymptotic properties of the local PCA estimators of the slope coefficients, factors, and factor

loadings. In Section 4, we construct various test statistics to check for the time-invariance of the

slope coefficients or/and factor loadings, derive the asymptotic distributions of these test statistics

under the null hypotheses, and investigate their local power properties. In Section 5, we study the

finite sample performance of our estimators and test statistics via simulations. Section 6 provides an

empirical application. Section 7 concludes. All proofs are relegated to an Online Supplement.
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Notation. For an m× n real matrix A, we denote its transpose as A′, its Frobenius norm as ‖A‖
(≡ [tr(AA′)]1/2), its spectral norm as ‖A‖sp (≡

√
µ1 (A′A)) and its Moore-Penrose generalized inverse

as A+, where ≡ signifies a definitional relationship and µs (·) denotes the sth largest eigenvalue of

a real symmetric matrix by counting eigenvalues of multiplicity multiple times. Note that the two

norms are equal when A is a vector. We will frequently use the submultiplicative property of these

norms and the fact that ‖A‖sp ≤ ‖A‖ ≤ ‖A‖sprank(A)1/2 . We also use µmax (B) and µmin (B) to

denote the largest and smallest eigenvalues of a symmetric matrix B, respectively. We use B > 0

to denote that B is positive definite. Let PA ≡ A (A′A)+A′ and MA ≡ Im − PA, where Im denotes

an m × m identity matrix. Let [a] = {1, 2, ..., a} , when a is a positive integer. The operator
p→

denotes convergence in probability,
d→ convergence in distribution, and plim probability limit. We

use (N,T )→∞ to denote that N and T pass to infinity jointly.

2 The model and estimation

In this section, we propose a TV panel data model with TV IFEs and discuss the estimation of the

parameters in the model.

2.1 The model

We consider the following TV panel data model with N cross-sectional units and T time periods:

Yit = X ′itβt + λ′itFt + εit, i ∈ [N ] , t ∈ [T ] , (2.1)

where Xit is a P × 1 vector of observable regressors, βt is a P × 1 vector of unknown TV coefficients,

λit is an R×1 vector of TV factor loadings, Ft is an R×1 vector of unobserved common factors, and

εit is an idiosyncratic error term with mean zero. The true values of βt, Ft and λit are denoted as

β0
t , F

0
t and λ0

it, respectively, but we will frequently suppress the superscript 0 unless confusion may

arise. At the moment, we assume the number of unobserved common factors, R, is known. We will

introduce a BIC-type information criterion to determine it in Section 3.4.

The model in (2.1) generalizes Bai’s (2009) panel data models with IFEs by allowing both the

slope coefficients and factor loadings to vary over time, and it also extends the TV factor model

of Su and Wang (2017) to allow for exogenous regressors. In order to capture various kinds of TV

coefficients and factor loadings, we use a nonparametric local smoothing method to estimate both βt

and λit under some smoothness conditions. Specifically, we follow the nonparametric literature on

TV models (see, e.g., Cai, 2007; Robinson, 2012; Chen et al., 2012; Su and Wang, 2017) and model

βt and λit as nonrandom functions of t/T :

βt = β(t/T ) and λit = λi(t/T ), (2.2)

where β(·) and λi(·) are unknown smooth functions defined on (0, 1].
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The model in (2.1) includes some commonly used models as special cases. For example, when

neither βt nor λit varies over t, the model in (2.1) reduces to the model studied in Bai (2009), Lu

and Su (2016), and Moon and Weidner (2015, 2017), among others. When X ′itβt is absent in (2.1),

the model becomes the TV factor model studied in Su and Wang (2017). When the IFEs degenerate

to the conventional additive fixed effects, the model in (2.1) becomes Li et al.’s (2011) TV coefficient

panel data models with additive fixed effects.

2.2 Estimation

Following the literature on TV models, we propose to estimate the model in (2.1) by a local smoothing

procedure.

For the moment, fix r ∈ [T ]. Under the assumption that λi(·) : (0, 1] 7→ RR and β(r) : (0, 1] 7→ RP

are continuously differentiable up to the second order, for any t/T close to r/T , we have

λit = λi

(
t

T

)
= λi

( r
T

)
+

[
λi

(
t

T

)
− λi

( r
T

)]
≡ λir + di(t, r), and

βt = β

(
t

T

)
= β

( r
T

)
+

[
β

(
t

T

)
− β

( r
T

)]
≡ βr + d0(t, r).

That is, we approximate λit by λir with an approximation error di(t, r) and βt by βr with an

approximation error d0(t, r). It follows that

Yit = X ′itβr + λ′irFt + ∆i(t, r) + εit. (2.3)

where ∆i(t, r) = X ′itd0(t, r) + di(t, r)
′Ft. The term ∆i(t, r) represents the combined approximation

error in the regression model and it will generate some bias terms in the estimation of the TV slope

coefficients and factor loadings.

To estimate {λir}Ni=1, {Ft}Tt=1 and βr, we consider the following LLS problem:

min
{λir}Ni=1,{Ft}Tt=1,βr

(NT )−1
N∑
i=1

T∑
t=1

[
Yit −X ′itβr − λ′irFt

]2
Kh

(
t− r
T

)
(2.4)

subject to some identification restrictions. Here, Kh(x) = h−1K(x/h) with kernel K : R 7→ R+ and

bandwidth h = h(T,N). Multiplying both sides of (2.3) by kh,tr ≡ h−1K((t − r)/(Th)) yields the

transformed model:

k
1/2
h,trYit ≈ k

1/2
h,trX

′
itβr + k

1/2
h,trλ

′
irFt + k

1/2
h,trεit when

t

T
≈ r

T
. (2.5)

Denote the T × N matrices Y (r) = (Y
(r)

1 , · · · , Y (r)
N ), and ε(r) = (ε

(r)
1 , · · · , ε(r)

N ), where Y
(r)
i =

(k
1/2
h,1rYi1, · · · , k

1/2
h,TrYiT )′ and ε

(r)
i = (k

1/2
h,1rεi1, · · · , k

1/2
h,TrεiT )′. Denote X(r) as a T × N × P three-

dimensional tensor with P sheets, the pth sheet of which is denoted as X
(r)
p = {k1/2

h,trXit,p}, a
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T × N matrix, where Xit,p is the pth element of Xit for p ∈ [P ]. Note that the cross-product

X(r)βr is a T ×N matrix with the (t, i)th element as k
1/2
h,trX

′
itβr. Let X

(r)
i = (k

1/2
h,1rXi1, ..., k

1/2
h,TrXiT )′,

F (r) = (k
1/2
h,1rF1, · · · , k1/2

h,TrFT )′ and Λr = (λ1r, · · · , λNr)′. Then, we can rewrite the transformed

model in (2.5) in vector form:

Y
(r)
i ≈ X(r)

i βr + F (r)λir + ε
(r)
i ,

or in matrix notation: Y (r) ≈ X(r)βr + F (r)Λ′r + ε(r). Then the minimization problem becomes

min
Λr,F (r),βr

(NT )−1
N∑
i=1

(
Y

(r)
i −X(r)

i βr − F (r)λir

)′ (
Y

(r)
i −X(r)

i βr − F (r)λir

)
(2.6)

subject to the constraints that F (r)′F (r)/T = IR and Λ′rΛr is diagonal with elements arranged in

descending order along its main diagonal line. By concentrating Λr out, we obtain the following

minimization problem

min
βr,F

(r)
(NT )−1

N∑
i=1

(
Y

(r)
i −X(r)

i βr

)′
MF (r)

(
Y

(r)
i −X(r)

i βr

)
. (2.7)

where MF (r) = IT − F (r)(F (r)′F (r))−1F (r)′ = IT − F (r)F (r)′/T ≡ IT − PF (r) .

Given F (r), we can readily obtain the LLS estimator of βr from (2.7). Given βr, the variable

W
(r)
i = Y

(r)
i − X

(r)
i βr has an approximate factor structure: W

(r)
i ≈ F (r)λir + ε

(r)
i . Then we can

estimate the normalized factor F (r) via the standard PCA. Such observations motivate us to obtain

the LLS estimator (β̂r, F̂
(r)) as the solution to the following set of nonlinear equations:

β̂r =

(
N∑
i=1

X
(r)′

i MF̂ (r)X
(r)
i

)−1 N∑
i=1

X
(r)′

i MF̂ (r)Y
(r)
i , (2.8)

F̂ (r)V̂
(r)
NT =

[
1

NT

N∑
i=1

(
Y

(r)
i −X(r)

i β̂r

)(
Y

(r)
i −X(r)

i β̂r

)′]
F̂ (r), (2.9)

where V̂
(r)
NT is a diagonal matrix that consists of the R largest eigenvalues of the matrix in the square

brackets in (2.9), arranged in descending order along its main diagonal line.

Note that F̂ (r)/
√
T is a collection of the normalized eigenvectors of 1

NT

∑N
i=1(Y

(r)
i −X

(r)
i β̂r)(Y

(r)
i −

X
(r)
i β̂r)

′ associated with its R largest eigenvalues. Given β̂r and F̂ (r), we obtain the estimator of

Λ(r)′ by Λ̂′r = (F̂ (r)F̂ (r)′)−1F̂ (r)′(Y
(r)
i −X(r)

i β̂r) = F̂ (r)′(Y
(r)
i −X(r)

i β̂r)/T for r ∈ [T ]. We use λ̂ir to

denote the ith column of Λ̂′r.

2.3 Boundary kernel

It is well known that a local constant estimator may suffer from the boundary bias problem when we

estimate a conditional mean object. To avoid the boundary bias problem associated with the kernel
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estimation and to facilitate the study of some uniform convergence results, we follow Hong and Li

(2005) and Li and Racine (2006, p.31) to apply the following boundary kernel:

k∗h,tr = h−1K∗r

(
t− r
Th

)
=


h−1K

(
t−r
Th

)
/
∫ 1
−r/(Th)K(u)du, if r ∈ [1, bThc)

h−1K
(
t−r
Th

)
, if r ∈ [bThc, T − bThc]

h−1K
(
t−r
Th

)
/
∫ (1−r/T )/h
−1 K(u)du, if r ∈ (T − bThc, T ]

,

where bThc denotes the integer part of Th. Note that k∗h,tr coincides with kh,tr in the interior region

but not in the boundary regions. By using this boundary kernel to replace kh,tr = Kh( t−rT ) in

(2.4)-(2.9), we obtain the estimators to be analyzed.

2.4 Updated estimation of the factors

The estimator F̂
(r)
t is only consistent for a rotational version of the weighted factor F

(r)
t ≡ k

∗1/2
h,tr Ft.

To obtain a consistent estimator of Ft after suitable rotation, we consider a two-stage estimation

procedure. Based on the consistent estimators of λit and βt obtained in the first stage, we can obtain

the consistent estimators of Ft, t ∈ [T ], in the second stage, by considering the following least squares

problem:

min
Ft∈RR

N∑
i=1

[
Yit −X ′itβ̂t − λ̂

′
itFt

]2
, t ∈ [T ].

The solution to the above problem is: F̂t =
(∑N

i=1 λ̂itλ̂
′
it

)−1∑N
i=1 λ̂it(Yit − X ′itβ̂t) for t ∈ [T ]. Let

Ĉit = λ̂
′
itF̂t, which is an estimator of the common component Cit ≡ λ′itFt.

3 Asymptotic Properties of the Estimators

In this section, we study the asymptotic distributions of the estimators of the TV coefficients, factors,

and TV factor loadings.

3.1 Basic assumptions

Define the T × P matrix

Z
(r)
i = MF (r)

X(r)
i −

1

N

N∑
j=1

X
(r)
j a

(r)
ij

 ,
where i ∈ [N ], a

(r)
ij = λ′ir (Λ′rΛr/N)−1 λjr. Obviously, a

(r)
ij = a

(r)
ji , N−1

∑N
l=1 a

(r)
il a

(r)
lj = a

(r)
ij , and

Z
(r)
i is equal to the deviation of MF (r)X

(r)
i from its weighted average with the weighting vector

a
(r)
i = (a

(r)
i1 , · · · , a

(r)
iN )′. Define the P × P matrix

D(r)(F (r)) =
1

NT

N∑
i=1

X
(r)′
i MF (r)X

(r)
i −

1

T

 1

N2

N∑
i=1

N∑
j=1

X
(r)′
i MF (r)X

(r)
j a

(r)
ij

 =
1

NT

N∑
i=1

T∑
t=1

Z
(r)
it Z

(r)′
it ,
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where Z
(r)′
it denotes the tth row of Z

(r)
i . Apparently, D(r)(F (r)) is semi-positive definite (p.s.d.) for

any r and F (r). Let MΛr = IN − Λr(Λ
′
rΛr)

−1Λ′r ≡ IN − PΛr . Recall that X
(r)
p denotes the pth sheet

of the three dimensional tensor X(r). Define

X̄(r)
p = E(X(r)

p ), X̃(r)
p = X(r)

p − X̄(r)
p , and X(r)

p = MF (r)X̄(r)
p MΛr + X̃(r)

p .

Define a three-dimensional T ×N×P tensor Z(r) whose pth sheet is denoted as Z
(r)
p (a T ×N matrix)

and given by

Z(r)
p = MF (r)X(r)

p MΛr = X(r)
p − PF (r)X̃(r)

p − X̃(r)
p PΛr + PF (r)X̃(r)

p PΛr .

Note that the elements of X
(r)
p , say X

(r)
p,it, are contemporaneously uncorrelated with the error terms

ε
(r)
it and εit.

Let εt = (ε1t, ..., εNt)
′, γN (s, t) = N−1E (ε′sεt) , γN,F (s, t) = N−1E (Fsε

′
sεt) , γN,FF (s, t) =

N−1E(Fsε
′
sεtF

′
t), and ζst = N−1[ε′sεt − E (ε′sεt)]. Define

$NT,1 (r) =
h1/2

√
NT

F (r)′ε(r)Λr =
h1/2

√
NT

N∑
i=1

T∑
t=1

k∗h,trFtεitλ
′
ir,

$NT,2 (r, t) =
h1/2

√
NT

[F (r)′ε(r)εt − E(F (r)′ε(r)εt)] =
h1/2

√
NT

T∑
s=1

N∑
i=1

k∗h,sr[Fsεisεit − E (Fsεisεit)].

Let τ ij,s = E (εisεjsF
′
sFs) . Let C <∞ denote a generic positive constant that may vary from case to

case. Let maxi,t = max1≤i≤N max1≤t≤T . Define analogously maxi,j , maxt,s, maxi, and maxt, etc. Let∑
i,j =

∑N
i=1

∑N
j=1 and

∑
t,s =

∑T
t=1

∑T
s=1. Let F = {F (r) : F (r)′F (r) = IR} and ρ

(r)
min = infF (r)∈F

µmin(D(r)(F (r))). Let C = σ
(
F 0
)
, the minimal-sigma field generated from the true common factor

F 0 = (F 0
1 , ..., F

0
T )′. We use EC (·) and VarC (·) to denote expectation and variance conditional on C.

Let β(c)(·) and λ
(c)
i (·) denote the cth order derivative of β(·) and λi(·), respectively.

We note that the factors and factor loadings that appear in our assumptions below denote the

true values F 0
t and λ0

it. But for notational simplicity, we suppress the superscript 0 hereafter unless

confusion may arise. We make the following assumptions.

Assumption A.1 (i) E(εit|Xit, Ft) = EC(εit) = 0, and maxi,t{E ‖εit‖8+4η + E ‖Ft‖8+4η} ≤ C for

some η > 0.

(ii) T−1
∑T

t=1 FtF
′
t = ΣF+OP (T−1/2) with E(FtF

′
t) = ΣF > 0, and maxt

∑T
s=1 |Cov(Ft,mFt,n, Fs,mFs,n)|

≤ C for m,n ∈ [R], where Ft,m denotes the mth element of Ft.

(iii) maxt
∑T

s=1 ‖γ(s, t)‖+ maxs
∑T

t=1 ‖γ(s, t)‖ ≤ C for γ = γN , γN,F , and γN,FF .

(iv) maxs,tE
∣∣N1/2ζst

∣∣4 + maxr,tE
∥∥N−1/2Λ′rεt

∥∥4 ≤ C.
(v) $NT,1 (r) = OP (1) and maxtE ‖$NT,2 (r, t)‖2 ≤ C for each r.

(vi) E(εitεjt) = σij,t, |σij,t| ≤ σ̄ij for all t, such that N−1
∑N

i,j=1 σ̄ij ≤ C.
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(vii) maxt6=r E
∥∥N−1/2Ftε

′
tεrF

′
r

∥∥4
+ 1

NT

∑
i,j

∑T
s=1 |τ ij,s| ≤ C.

Assumption A.2 (i) There exists a constant C > 0 such that ρ
(r)
min ≥ C for r ∈ [T ].

(ii) Both E (Xt) and E (XtF
′
t) are time-invariant. maxi,tE ‖Xit‖8+4η ≤ C.

(iii) maxi,j,t
∑T

s=1 |Cov(εitεjt, X
′
isXjs)| ≤ C.

(iv) h
N1/2T

∑N
i=1

∑
t,s k

∗
h,trk

∗
h,srFt,lFs,q

[
X̃isεit − EC(X̃isεit)

]
= OP (1) for l, q ∈ [R] and r ∈ [T ].

Assumption A.3 (i) λit are nonrandom such that maxi,t ‖λit‖ ≤ c̄λ < ∞ and N−1Λ′rΛr = ΣΛr +

O(N−1/2) for some R×R positive definite matrix ΣΛr and for all r.

(ii) For each r, the eigenvalues of the R×R matrix ΣFΣΛr are distinct.

(ii) λi(·) is third-order continuously differentiable with maxi,t ||λ(c)
i (t/T )|| ≤ c̄λ <∞ for c ∈ [3].

(iii) β(·) is third-order continuously differentiable with maxt

∥∥∥β(c)(t/T )
∥∥∥ ≤ c̄β <∞ for c ∈ [3].

Assumption A.4 (i) The kernel function K : R → R+ is a symmetric continuously differentiable

probability density function (PDF) with compact support [−1, 1].

(ii) As (N,T ) → ∞, Th7 → 0, Nh6 → 0, Nh/T → 0, NTh9 → 0, Nh2 → ∞, Th/N1/2 → ∞,

Th2/ lnT →∞, and N3T−2h−1(lnT )−2 →∞.

Assumption A.5 As (N,T )→∞,
√
h√
NT

∑N
i=1

∑T
t=1 X

(r)
it ε

(r)
it

d→ N(0,Ωr), where Ωr = lim(T,N)→∞Var

(
√
h√
NT

∑N
i=1

∑T
t=1 X

(r)
it ε

(r)
it ).

Assumption A.1 mainly imposes some restrictions on εit and Ft. It is comparable with the

corresponding conditions in Assumption A.1 of Su and Wang (2017). The moment condition in

Assumption A.1(i) is not needed for some of the theorems below but will be needed for the asymptotic

results in Section 4. Assumption A.1(ii) assumes that E(FtF
′
t) is homogenous over t. The same

assumption has been made in the literature on TV factor models; see, e.g., Stock and Watson (2002),

Breitung and Eickmeier (2011), Han and Inoue (2015), and Su and Wang (2017, 2020b), among

others. As remarked by Su and Wang (2017), this condition can be regarded as an identification

condition for the TV factor loadings. The other conditions in Assumption A.1 require the cross-

sectional dependence among {εit} or serial dependence among {(Ft, εit)} to be weak.

Assumption A.2(i) is an identification condition for the regression coefficients. It is similar to

Assumption A in Bai (2009) and rules out the low-rank (e.g., time-invariant) regressors in Xit.

Assumption A.2(ii) imposes some moment conditions on {Xit} and {XitF
′
t} . Note that we assume

E (Xit) and E(XitF
′
t) to be time-invariant, which rules out TV dynamic panels. Assumptions A.2(iii)-

(iv) require weak cross-sectional and serial dependence among {(Xit, εit)} .
Assumption A.3 imposes some restrictions on the TV coefficients and factor loadings. A.3(i) as-

sumes that the factor loadings are nonrandom and uniformly bounded, as in Bai (2003) and Breitung

and Eickmeier (2011). A.3(ii) is needed for the identification of the eigenvectors. A.3(iii) and (iv)

require that β(·) and λi(·) are third-order continuously differentiable, which facilities the Taylor ex-

pansion up to the third order. Assumption A.4 imposes regularity conditions on the kernel function

and bandwidth. Assumption A.5 is similar to Assumption E in Bai (2009). This assumption is used
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to establish the asymptotic normality of our LLS estimators and can be verified under some primitive

conditions.

It is worth mentioning that we do not assume independence between {εit} and {(Xit, Ft)} (see

Assumption D in Bai (2009)). This will allow for conditional heteroskedasticity of the type considered

in Su and Chen (2013). In particular, the conditional variance of εit given (Xit, Ft) can be a function

of both Xit and Ft. Such a generality will complicate our asymptotic analysis in various places by

using conditional arguments instead of unconditional arguments.

3.2 Asymptotic properties of β̂t, F̂t, and λ̂it

Under the above regularity conditions, we now establish the asymptotic distributions of the estimators

of the TV coefficients, common factors, and TV factor loadings that are obtained via our LLS

and local PCA methods. As is well known, latent common factors and factor loadings are not

separately identifiable. However, they can be identified up to an invertible R × R matrix H(r),

where H(r) = (N−1Λ′rΛr)(T
−1F (r)′F̂ (r))V̂

(r)−1
NT and V̂

(r)
NT is as defined below (2.9). That is, F̂ (r) is a

consistent estimator of H(r)F (r), and λ̂ir is a consistent estimator of H(r)−1λir.

Before establishing the asymptotic distribution of these estimators, we first show that the esti-

mators β̂t and F̂ (r) are consistent.

Proposition 3.1 (Consistency of β̂t and F̂ (r)) Suppose that Assumptions A.1–A.4 hold. Then as

(N,T )→∞,

(i) the estimator β̂t is consistent such that β̂t − βt = OP (T−1/4 +N−1/8 + h1/2);

(ii) the matrix T−1F (r)′F̂ (r) is invertible and
∥∥PF̂ (r) − PF (r)

∥∥ = OP (T−1/4 +N−1/8 + h1/2).

In the above proposition, both βt and F (r) denote the true values despite the fact that we suppress

their superscript 0. Proposition 3.1(i) establishes the consistency of the LLS estimator β̂t. However,

we can not deduce that F̂ (r) is consistent for F (r)H(r) at this moment. This is because F (r) is a

T × R matrix, where its dimension grows to infinity as T →∞. However, Proposition 3.1(ii) shows

that the spaces spanned by F̂ (r) and F (r)H(r) are asymptotically the same.

To proceed, we add some notations. Let Vr denote the diagonal matrix consisting of the eigen-

values of Σ
1/2
Λr

ΣFΣ
1/2
Λr

in descending order with Υr being the corresponding (normalized) eigenvector

matrix (Υ′rΥr = IR). Let Qr = V
1/2
r Υ−1

r Σ
−1/2
Λr

. We use H
(r)
0 to denote the probability limit of

H(r). Let A1,tr = Xtβ
(1)
r + Λ

(1)
r Ft and A2,tr = 1

2 [Xtβ
(2)
r + Λ

(2)
r Ft], where Xt = (X1t, ..., XNt)

′ ,

Λ
(l)
r = (λ

(l)
1r , ..., λ

(l)
Nr)
′, β

(l)
r denotes the lth order derivative of β (·) evaluated at r/T, and λ

(l)
ir denotes

the lth order derivative of λi (·) evaluated at r/T for l = 1, 2, 3. Denote

C
(r)
`t = V̂

(r)−1
NT H(r)′ΣF

(
Λ′rA`,tr/N

)
for ` = 1, 2,

C
(r)
3t = N−1V̂

(r)−1
NT H(r)′E(FtA

′
2,tr)ΛrFt, and

C
(r)
4t = V̂

(r)−1
NT

1

TN

∑
s

(
s− r
Th

)2k∗h,srE[C̄
(r)
1s A

′
1,sr]ΛrFt/κ2, (3.1)

10



where κ2 =
∫
u2K(u)du. Let C̄

(r)
1t = V (r)−1H

(r)′
0 ΣF (Λ′rA1,tr/N) . Define C̄

(r)
2t , C̄

(r)
3t and C̄

(r)
4t analo-

gously to C
(r)
2t , C

(r)
3t , and C

(r)
4t with V̂

(r)−1
NT and H(r) replaced by their probability limits V (r)−1 and

H
(r)
0 . Let A2,itr = 1

2 [X ′itβ
(2)
r + λ

(2)′
ir Ft], the ith element in A2,tr. Let V

(r)
i ≡ N−1

∑N
k=1 a

(r)
ik X

(r)
k ≡

(V
(r)
i1 , ..., V

(r)
iT )′, where V

(r)
it = N−1

∑N
k=1 a

(r)
ik X

(r)
kt ≡ k

∗1/2
h,tr Vit,r and Vit,r = N−1

∑N
k=1 a

(r)
ik Xkt.

Given the consistency result in Proposition 3.1, we can further establish the asymptotic normality

of the coefficient estimator.

Theorem 3.2 (Asymptotic normality of β̂t) Suppose Assumptions A.1–A.5 hold. As (N,T ) → ∞,

we have for each r ∈ [bThc, T − bThc] ,

√
NTh

(
β̂r − βr − [D(r)(F (r))]−1[B

(r)
1β +

1

Th
B

(r)
2β +

1

N
B

(r)
3β +

1

Th
B

(r)
4β ]

)
d→ N

(
0, D

(r)−1
0 ΩrD

(r)−1
0

)
,

where

D
(r)
0 = plim

(N,T )→∞
D(r)(F (r)),

B
(r)
1β =

1

NT

N∑
i=1

T∑
t=1

k∗h,trE [(Xit − Vit,r)A2,itr] (
t− r
T

)2

+
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

k∗h,trk
∗
h,sr(Xit − Vit,r)F ′tH(r)[H(r)′FsA2,isr + C

(r)
1s A1,isr](

s− r
T

)2,

B
(r)
2β = (B

(r)
2β,1, · · · , B

(r)
2β,P )′ with B

(r)
2β,p = − h

N
tr
(
PF (r)EC [X

(r)
p ε(r)′]

)
for p ∈ [P ],

B
(r)
3β = − 1

N

N∑
i=1

N∑
j=1

1

T
(X

(r)
i − V

(r)
i )′F (r)(

1

T
F (r)′F (r))−1(

1

N
Λ′rΛr)

−1λjr

(
1

T

T∑
t=1

k∗h,trEC(εitεjt)

)
, and

B
(r)
4β = − h

N2T

N∑
i=1

N∑
j=1

X
(r)′
i MF (r)ε

(r)
j ε

(r)′
j F (r)(

1

T
F (r)′F (r))−1(

1

N
Λ′rΛr)

−1λir.

Theorem 3.2 establishes the asymptotic normality of the LLS estimator β̂r for each interior

point r. In fact, it is a local version of Theorem 3 in Bai (2009) and Theorem 4.3 in Moon and

Weidner (2017). We note that the bias term contains four components. The first component,

[D(r)(F (r))]−1B
(r)
1β , is introduced by the local approximation error and is OP (h2) as in standard

kernel regressions. For this reason, we can refer to this bias term as the nonparametric kernel

bias hereafter. The second component 1
Th [D(r)(F (r))]−1B

(r)
2β is due to the non-contemporaneous

correlation of the error term and regressors along the time direction. This bias term is a local

version of that in Moon and Weidner (2017), which generalizes Nickell’s (1981) bias in panel data

regressions with predetermined but not strictly exogenous regressors Xit. If we only consider strictly

exogenous regressors such that EC (Xisεit) = 0 for all s and t, then this term will disappear. The

third component 1
N [D(r)(F (r))]−1B

(r)
3β is due to the cross-sectional correlation and heteroskedasticity

over i. When the cross-sectional correlation and heteroskedasticity are absent conditional on C, we
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have EC(εitεjt) = σ2
t1 {i = j} with 1 {·} being the usual indicator function. Then

B
(r)
3β = − 1

N

N∑
i=1

1

T

(
X

(r)
i −N

−1
N∑
k=1

a
(r)
ik X

(r)
k

)′
F (r)(

1

T
F (r)′F (r))−1(

1

N
Λ′rΛr)

−1λirσ̄
(r)2 = 0,

where σ̄(r)2 = 1
T

∑T
t=1 k

∗
h,trσ

2
t and the last equality follows from the fact that N−1

∑N
i=1 a

(r)
ik λir = λkr.

That is, B
(r)
3β would disappear if the error terms are cross-sectionally uncorrelated and homoskedastic

given C. The fourth component is due to the time series heteroskedasticity and serial correlation. Let

εj = (εj1, ..., εjT )′. Unlike Bai (2009) and Moon and Weidner (2017), even if EC(εjε
′
j) = σ2

j IT , this

bias term will not disappear because of the appearance of kernel weights {k∗1/2h,tr } in the definition of

ε
(r)
j . In the special case where the “weighted error term” ε

(r)
jt = k

∗1/2
h,tr εjt is serially uncorrelated and

homoskedastic over t conditional on C, we can show that B
(r)
4β is asymptotically negligible by noting

that MF (r)EC [ε
(r)
j ε

(r)′
j ]F (r) is now proportional to MF (r)ITF (r) = 0.

It is easy to see that the contribution of B
(r)
1β ,

1
ThB

(r)
2β ,

1
NB

(r)
3β and 1

ThB
(r)
4β to the asymptotic bias

of β̂r are respectively h2, 1
Th ,

1
N , and 1

Th in probability order. Since the last three bias terms can be

corrected as in the standard parametric panel data models with time-invariant factor loadings, it is

desirable to choose h ∝ (NT )−1/5 to achieve a balance between the asymptotic variance of β̂r and

the squared nonparametric kernel bias. With such a choice of bandwidth, β̂r, after correcting the

other three bias terms, will achieve the desirable pointwise (NTh)−1/2-rate of convergence. This rate

is faster than the convergence rate of F̂t and λ̂it in Su and Wang’s (2017) TV factor models. As a

result, the estimation of βr has asymptotically negligible impact on the limiting distributions of F̂t

and λ̂it.

To study the asymptotic distributions of the estimated TV factor loadings λ̂it, the estimated

common factors F̂t, and the estimated common component Ĉit = λ̂
′
itF̂t, we add a new assumption.

Assumption A.6 (i)N−1/2Λ′rεt
d→ N (0,Γrt) for each r, t, where Γrt = limN→∞N

−1
∑

i,j λirλ
′
jrE (εitεjt) .

(ii)
√
h√
T

∑T
s=1 kh,srFsεis

d→ N (0,Ωi,r) , where

Ωi,r = lim
T→∞

[
h

T

T∑
s=1

k2
h,srE

(
FsF

′
sε

2
is

)
+

2h

T

T−1∑
s=1

T∑
t=s+1

kh,srkh,trE
(
FsF

′
tεisεit

)]
.

This assumption is the same as Assumption A.2 in Su and Wang (2017). Assumption A.6(i)

extends Assumption F.3 in Bai (2003) to allow for the TV factor loadings and Assumption A.6(ii)

is the kernel-weighted version of Assumption F in Bai (2003). Both parts are used to establish the

asymptotic normality of our estimated common factors and factor loadings, and can be verified under

some primitive conditions.

The following theorem shows the asymptotic distributions of F̂
(r)
t , λ̂it, F̂t, and Ĉit.

Theorem 3.3 (Asymptotic normality of F̂
(r)
t , λ̂it, F̂t, Ĉit)
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(i) Suppose that Assumptions A.1–A.4 and A.6(i) hold. Then, for each t ∈ [T ] and r ∈ [T ] such

that |r − t| ≤ Th, we have

K∗r

(
r − t
Th

)−1/2√
Nh

[
F̂

(r)
t −H(r)′F

(r)
t −B(r)

t

]
d→ N(0, V −1

r QrΓrtQ
′
rV
−1
r ),

where B
(r)
t = k

∗1/2
h,tr [C

(r)
1t

t−r
T + C

(r)
2t ( t−rT )2 + C

(r)
3t h

2κ2 + C
(r)
4t h

2κ2].

(ii) Suppose that Assumptions A.1–A.4 and A.6(ii) hold. Then for r ∈ [bThc, T − bThc] we have

√
Th
[
λ̂ir −H(r)−1λir −BΛ(i, r)

]
d→ N

(
0,
(
Q′r
)−1

Ωi,rQ
−1
r

)
∀i ∈ [N ] and r ∈ [T ],

where BΛ(i, r) = [E(C̄
(r)
1t A1,itr)+H

(r)′E (FtA2,itr)]κ2h
2−
{
H(r)′E[Ft(C̄

(r)
2t + C̄

(r)
3t + C̄

(r)
4t )′] + E(C̄

(r)
1t C̄

(r)′
1t )

}
×H(r)−1λirκ2h

2.

(iii) Suppose that Assumptions A.1–A.4 and A.6(i) hold. If in addition, we assume that Nh4 =

o (1) , then √
N
[
F̂t −H(t)′Ft

]
d→ N

(
0,
(
Σ−1

Λt
Q−1
t

)′
ΓttΣ

−1
Λt
Q−1
t

)
∀t ∈ [T ].

(iv) Suppose that Assumptions A.1–A.4 and A.6 hold and Nh4 = o (1). Then

(
1

N
V1it +

1

Th
V2it

)−1/2 [
Ĉit − C0

it −BC(i, t)
]

d→ N (0, 1) ∀i ∈ [N ] and t ∈ [T ],

where V1it = λ′itΣ
−1
Λt

ΓttΣ
−1
Λt
λit, V2it = F ′tΣ

−1
F Ωi,tΣ

−1
F Ft, BC(i, t) =

[
λ′itQ

′
tBF (t) +BΛ(i, t)′(Q

(−1)
t )′

]
Ft,

BF (t) = (QtΣΛtQ
′
t)
−1 B̃F (t)κ2h

2 and B̃F (t) is defined in the proof of (iii).

The results in Theorem 3.3(i)–(iv) are comparable with those in Theorems 2.1-2.4 of Su and

Wang (2020a), which correct the results in Su and Wang (2017). Theorem 3.3(i) establishes the

asymptotic distribution of F̂
(r)
t . When we treat H(r)′F

(r)
t as the pseudo-true factor, we note that

the bias term B
(r)
t consists of four parts. The first and second parts are related to t−r

T and ( t−rT )2

that are of respective orders OP (h) and OP (h2) and generated from the third-order Taylor expansion

of ∆
(r)
it ≡ k

∗1/2
h,tr ∆i(t, r), where recall that ∆i(t, r) ≡ X ′it(βt − βr) + (λit − λir)′Ft. In the eigenvalue

analysis, there is no summation running over r or t so that terms associated with t−r
T and ( t−rT )2

cannot be smoothed out. The third part in B
(r)
t , viz., N−1V̂

(r)−1
NT H(r)′E(FtA

′
2,tr)ΛrFt is derived from

the usual local constant estimation of the common factors while the last component in B
(r)
t generated

from the summation over a term associated with C
(r)
1t

t−r
T appearing in the derivation. Consequently,

B
(r)
t is OP (h), which is quite large but does not cause much trouble in the asymptotic analyses of

λ̂ir and F̂t below.

Theorem 3.3(ii) establishes the asymptotic distribution of λ̂ir for r ∈ [bThc, T − bThc], and it is

quite similar to that in Su and Wang (2017). When we treat H(r)−1λir as the pseudo-true factor

loading, Theorem 3.3(ii) indicates that the bias of λ̂ir contains two terms associated with λir and

βr and their first and second order derivatives. The first term is associated with the conventional
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nonparametric kernel estimation, and the second term is introduced by the bias terms in F̂
(r)
t . If one

uses the optimal bandwidth h in estimating βr such that NTh5 � 1, it is easy to see that Th5 = o(1)

and the asymptotic bias of λ̂ir is asymptotically negligible.

Theorem 3.3(iii) reports the asymptotic distribution of the second stage estimator of the factor

under the additional condition Nh4 = o (1) . This condition ensures that the nonparametric kernel

bias of β̂r, which is OP (h2), and thus oP (N−1/2). Therefore it is asymptotically negligible in the

asymptotic distribution of F̂t. Without this condition, the asymptotic kernel bias of β̂r will be carried

over to yield an asymptotically non-negligible bias for F̂t. Note that the result in Theorem 3.3(iii)

is different from that in Theorem 2.3 of Su and Wang (2020a) because the latter paper does not

impose the condition Nh4 = o (1) . Without this condition, Su and Wang (2020a) demonstrate that

F̂t is asymptotically unbiased for H̃(t)′Ft in the pure TV factor model where H̃(t) = H(t) + BF (t)′

with BF (t) = (QtΣΛtQ
′
t)
−1 B̃F (t)κ2h

2 and B̃F (t) is defined in the proof of the theorem. Since the

correction for H(t) is also OP
(
h2
)

and thus oP (N−1/2) provided Nh4 = o (1) , the centering around

either H̃(t)′Ft or H(t)′Ft yields the same asymptotic distribution.

In general, Theorem 3.3(iv) shows that the estimated common component, Ĉit, also exhibits bias

that is OP (h2), carried over from the estimates λ̂ir and F̂t. If one imposes the additional condition

NTh5 = O(1), then both Nh4 and Th5 are o (1) under Assumption A.4(ii) so that the bias term

BC(i, t) can be removed from the result in Theorem 3.3(iv).

Since we focus on the inference of the regression coefficient βr, we will impose the condition

NTh5 = O(1) in the subsequent study. This condition, along with the condition that Th2/ lnT →∞
in Assumption A.4(ii), automatically ensures Nh4 = o(1). In practice, if one is also interested in the

inferences on the factors and factor loadings, a multiple-step approach would be recommended. In

the first step, one chooses h ∝ (NT )−1/5 to obtain estimates {β̂r} as in Section 2. In the second step,

one considers fitting a TV factor model to the residuals {Ŵit}, where Ŵit = Yit−X ′itβ̂r by specifying

another bandwidth, say, h̃, which is proportional to T−1/5, the optimal rate for the estimation of the

factor loadings.

3.3 Bias-corrected estimator and uniform convergence

By Theorem 3.2, the estimator β̂t has four bias terms. The first term has been referred to as a

kernel bias. There are various ways to correct such a bias term, including the simplest but inefficient

method of undersmoothing, the plug-in method which requires explicit estimation of certain first and

second-order derivative objects in our context, and some bootstrap methods. For brevity, we do not

address the correction of this bias term here. Instead, we focus on the correction of the other three

bias terms.

We will define a bias-corrected estimator β̂
bc

t based on the estimators β̂t, F̂t and λ̂it. For the

common factor Ft, we use the second stage estimator F̂t, and we estimate F
(t)
s (= k

∗1/2
h,st F

(t)
s ) by

F̌
(t)
s = k

∗1/2
h,st F̂s. Let F̌ (t) = (F̌

(t)
1 , · · · , F̌ (t)

T )′.

First, we define the estimated T × N × P tensor Ẑ(t), whose pth sheet is given by Ẑ
(t)
p =
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MF̌ (t)X
(t)
p MΛ̂t

for p ∈ [P ], whereMF̌ (t) = IT−F̌ (t)( 1
T F̌

(t)′F̌ (t))−1F̌ (t)′/T andMΛ̂t
= IT−Λ̂t(Λ̂

′
tΛ̂t)

−1Λ̂′t.

Note that 1
T F̌

(t)′F̌ (t) may not be exactly an identity matrix. As before, let Ẑ
(t)
i denote the T × P

submatrix of Ẑ(t) by fixing the cross-section unit i :

Ẑ
(t)
i = MF̌ (t) [X

(t)
i −

1

N

N∑
j=1

X
(t)
j â

(t)
ij ] = MF̌ (t) [X

(t)
i − V̂

(t)
i ],

where â
(t)
ij = λ̂

′
it(N

−1Λ̂′tΛ̂t)
−1λ̂jt and V̂

(t)
i = N−1

∑N
j=1 â

(t)
ij X

(t)
j . Define

D̂(t)(F̂ (t)) =
1

NT

N∑
i=1

Ẑ
(t)′
i Ẑ

(t)
i =

1

NT

N∑
i=1

T∑
s=1

Ẑ
(t)
is Ẑ

(t)′
is ,

where Ẑ
(t)′
is denotes the sth row of Ẑ

(t)
i .

Note that EC(Xisεit) = 0 if s ≤ t and it can be nonzero otherwise under our conditions. Let

Γ(τ) = 1{0 ≤ τ ≤ 1}. Define

B̂
(t)
2β = − h

N

N∑
i=1

T−1∑
r=1

T∑
s=r+1

Γ(
s− r
M

)
[
PF̂ (t)

]
r,s
ε̂

(t)
ir X

(t)
i,s ,

B̂
(t)
3β = − 1

N

N∑
i=1

N∑
j=1

1

T
[X

(t)
i − V̂

(t)
i ]′F̂ (t)(

1

N
Λ̂′tΛ̂t)

−1λ̂jt

[
1

T

T∑
s=1

k∗h,stε̂isε̂js

]
,

B̂
(t)
4β = − h

N2T

N∑
i=1

N∑
j=1

X
(t)′
i MF̂ (t) ε̂

(t)
j ε̂

(t)′
j F̂ (t)(

1

N
Λ̂′tΛ̂t)

−1λ̂it,

which are estimators of B
(t)
2β , B

(t)
3β , and B

(t)
4β , respectively. Here M is a truncation parameter such

that M ≡M (T )→∞ as T →∞.
Then, we define the bias-corrected estimator as follows:

β̂
bc

t = β̂t − D̂(t)(F̂ (t))−1

[
1

Th
B̂

(t)
2β +

1

N
B̂

(t)
3β +

1

Th
B̂

(t)
4β

]
.

To study the uniform convergence of β̂
bc

t , λ̂it, F̂t and Ĉit, we add the following assumptions.

Assumption A.7 (i) ‖ε‖sp = OP
(
N1/2 + T 1/2

)
and maxt

∣∣∣ 1
N

∑N
i=1

[
ε2
it − E(ε2

it)
]∣∣∣ = OP (N−1/2 (lnT )1/2).

(ii) maxr
∣∣ 1
NΛ′rΛ

′
r − ΣΛr

∣∣ = o(1), and the eigenvalues of ΣΛr are bounded below from 0 and above

from infinity uniformly in r.

(iii) maxi,r

∥∥∥ 1
T

∑T
t=1 k

∗
h,trFtεit

∥∥∥+maxr

∥∥∥ 1
T

∑T
t=1 k

∗
h,tr (FtF

′
t − ΣF )

∥∥∥+maxr

∣∣∣ 1
T

∑T
t=1 k

∗
h,tr[‖Ft‖ − E ‖Ft‖]

∣∣∣
= OP ((Th)−1/2 (lnT )1/2).

(iv) maxs,t
∥∥N−1Λ′sεt

∥∥+ maxs
∥∥N−1Λ′sεsFs

∥∥ = OP (N−1/2 (lnT )1/2).

(v) maxr ‖$NT,1 (r)‖+ maxr,t ‖$NT,2 (r, t)‖ = OP ((lnT )1/2).

(vi) maxr

∥∥∥ 1
NT

∑T
t=1 Λ′rε

(r)
t F

(r)′
t

∥∥∥ = maxr

∥∥∥ 1
NT

∑N
i=1

∑T
t=1 k

∗
h,trλirεitF

′
t

∥∥∥ = OP
(
(NTh)−1/2(lnT )1/2

)
.
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Assumption A.8 As (N,T )→∞, MN1/2(Th)−1/2(N−1/2+(Th)−1/2+h2)→ 0 andM2(Th)−1 → 0.

Assumption A.7 imposes some high level conditions. It strengthens Assumption A.4 in Su and

Wang (2017). Assumption A.8 imposes conditions on the truncation parameter M.

Theorem 3.4 (Uniform convergence of β̂
bc

t ). Suppose that Assumptions A.1–A.8 hold. Suppose that

NTh5 = O (1) . Then as (N,T )→∞, we have

(i)
√
NTh

(
β̂
bc

t − βt − [D(t)(F (t))]−1B
(t)
1β

)
d→ N

(
0, D

(t)−1
0 ΩtD

(t)−1
0

)
,

(ii) maxt

∥∥∥β̂bct − βt∥∥∥ = OP
(
(NTh/ lnT )−1/2

)
.

Theorem 3.4(i) establishes the asymptotic normality for the bias-corrected estimator β̂
bc

t . Since

B
(t)
1β = O

(
h2
)
, the MSE-optimal rate of bandwidth h should be proportional to (NT )−1/5 as in

standard local constant estimation when a second-order kernel is applied. When h ∝ (NT )−1/5 , the

remaining asymptotic bias β̂
bc

t is of order h2 = O((NT )−2/5) = o
(
(NTh/ lnT )−1/2

)
. This explains

why the role of the asymptotic bias appears to vanish in Theorem 3.4(ii) when the optimal-rate of

bandwidth is employed. In the following theorem, we study the uniform convergence rates of λ̂it, F̂t,

and Ĉit.

Theorem 3.5 (Uniform convergence of λ̂it, F̂t, Ĉit) Suppose that Assumptions A.1–A.8 hold. Then

(i) maxi,t

∥∥∥λ̂it −H(t)−1λit

∥∥∥ = OP
(
(Th/ lnT )−1/2 + h2

)
,

(ii) maxt

∥∥∥F̂t −H(t)′Ft

∥∥∥ = OP
(
(N/ lnT )−1/2 + h2

)
,

(iii) maxi,t

∣∣∣Ĉit − Cit∣∣∣ = oP
(
(Th/ lnT )−1/2T 1/8 + h2T 1/8

)
.

If, in addition, h = O((NT )−1/5), then the terms associated with h2 in (i)-(iii) are asymptotically of

smaller order than the other term.

Theorem 3.5 suggests that the uniform convergence rates are the same as those obtained for the

pure TV factor model in Su and Wang (2017). This is due to the faster
√
NTh-convergence rate of

β̂
bc

t to βt + [D(t)(F (t))]−1B
(t)
1β . When the optimal-rate bandwidth is applied in the estimation of βt,

the effect of B
(t)
1β is asymptotically negligible. Otherwise, its effect is reflected in the terms associated

with h2 in Theorem 3.5(i)-(iii).

3.4 Determination of the number of factors

In the above analysis, we assume that the number of factors, R, is known. In practice, one has to

determine R from the data. Following Bai (2009), Moon and Weidner (2015), and Lu and Su (2016),

when R is overspecified, the convergence rate of the regression coefficient estimator does not change,

but the estimates would be less efficient than in the case of correct specification in finite samples.

The same argument holds for our TV cases. In order to choose the appropriate number of common

factors, we follow Su and Wang (2017) to introduce an information criterion (IC) to determine the
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number of common factors. Here we assume that the true value of R, denoted as R0, is bounded

from above by a finite integer Rmax.

Let β̂
bc

t (R), F̂t (R), and λ̂it (R) denote the LLS estimators of the coefficients, factors and factor

loadings given in Section 2. We define the sum of squared residuals (SSR) as follows:

V (R) =
1

NT

N∑
i=1

T∑
t=1

[
Yit −X ′itβ̂

bc

t (R)− λ̂′it(R)F̂t(R)
]2
. (3.2)

As in Bai and Ng (2002), we propose the following BIC-type IC to determine R0 :

IC (R) = lnV (R) + ρNTR, (3.3)

where ρNT plays the role of ln(NT )/(NT ) in the case of BIC and 2/(NT ) in the case of AIC. Let

R̂ = arg min1≤R≤Rmax IC (R) .

When we prove the consistency of the above IC, we follow Su and Wang (2017) to use the following

normalization rule instead of that used in Section 2.2:

N−1Λ′rΛr = IR and T−1F (r)′F (r) is a diagonal matrix with decreasing diagonal elements. (3.4)

As Bai and Ng (2002) and Su and Wang (2017) remark, V (R) in (3.2) does not depend on which

version of normalization is used. However, the normalization in (3.4) will facilitate the proof of

Theorem 3.6 below.

We add the following two assumptions.

Assumption A.9. (i) maxs,t{E
∥∥N−1/2Λ′sεtF

′
t

∥∥4
+ E

∥∥N−1/2 [Fsε
′
sεtF

′
t − E (Fsε

′
sεtF

′
t)]
∥∥2} ≤ C.

(ii) maxr E
∥∥∥ h1/2

(NT )1/2

∑N
i=1

∑T
t=1 kh,tr [FtεitεirF

′
r − E (FtεitεirF

′
r)]
∥∥∥2
≤ C.

Assumption A.10. As (N,T )→∞, ρNT → 0 and ρNTC
2
NT →∞, where CNT = min(

√
Th,
√
N,h−2).

Assumption A.9 is new and needed for the proof of Theorem 3.6. The conditions on ρNT in

Assumption A.10 are typical conditions in order to estimate the number of factors consistently. The

penalty coefficient ρNT has to shrink to zero at an appropriate rate to avoid both overfitting and

underfitting.

Theorem 3.6 (Consistency of the IC) Suppose that Assumptions A.1–A.10 hold. Then

P
(
R̂ = R0

)
→ 1 as (N,T )→∞.

Theorem 3.6 shows that the class of information criteria defined by IC (R) in (3.3) can consistently

estimate R0. To implement the information criterion, one needs to choose the penalty coefficient

ρNT . Following the lead of Bai and Ng (2002) and Su and Wang (2017), we suggest setting ρNT =
N+Th
NTh ln

(
NTh
N+Th

)
or ρNT = N+Th

NTh lnC2
NT . Intuitively, as the estimators of the regression slopes
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converge to the true values faster than those of the factors and factor loadings, the estimation of the

slope coefficients has asymptotically negligible effect on the determination of the number of factors.

Such an intuition is used in the proof of Theorem 3.6.

4 Specification Testing

In this section, we test the specifications of the commonly used panel data models with time-invariant

slope coefficients or factor loadings.

4.1 Hypotheses

Given the asymptotic results in the last section, it is natural to consider testing the constancy of the

slope coefficients βt and factor loadings λit. We first consider the following null hypothesis:

H(1)
0 : βt = β0 for some β0 ∈ RP for all t and λit = λi0 for some λi0 ∈ RR for all (i, t) .

The alternative hypothesis H(1)
A is the negation of H(1)

0 :

H(1)
A : βt 6= β0 for some t or λit 6= λi0 for some (i, t) ,

where β0 and λi0 are the unknown slope coefficients and the time-invariant factor loadings, respec-

tively. We allow βt = β (t/T ) and λit = λi (t/T ) to be piece-wise smooth functions on (0,1] with finite

numbers of discontinuities under H(1)
A . Under H(1)

0 , both the slope coefficients and the factor loadings

are time-invariant. The model degenerates to the traditional time-invariant panel data model with

the usual IFEs, which has been studied by Bai (2009), Lu and Su (2016), and Moon and Weidner

(2017), among others. Under H(1)
A , either the slope coefficients, or the factor loadings, or both can

vary over time so that the traditional PCA method typically fails to yield consistent estimators of

the model parameters.

When we reject H(1)
0 , it is of further interest to consider testing either the null hypothesis of

time-invariant slope coefficients:

H(2)
0 : βt = β0 for some β0 ∈ RP for all t,

or the null hypothesis of time-invariant factor loadings:

H(3)
0 : λit = λi0 for some λi0 ∈ RR for all (i, t) ,

where the alternative hypotheses H(2)
A and H(3)

A are the negations of H(2)
0 and H(3)

0 , respectively. Note

that we allow the factor loadings to be TV under H(2)
0 and the slope coefficients to be TV under H(3)

0 ,

so that the null models under H(1)
0 , H(2)

0 , and H(3)
0 are distinct from each other. Under H(2)

0 , we have
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the time-invariant slope coefficient and TV factor loadings; under H(3)
0 , we have the TV panel data

models with the usual IFEs. Obviously, the model under H(1)
0 is nested in the model under either

H(2)
0 or H(3)

0 .

In the absence of regressors, the model in (2.1) becomes a pure factor model and various tests

have been proposed to test the null hypothesis H(3)
0 . See Breitung and Eickmeier (2011), Chen et al.

(2014), Han and Inoue (2015), Yamamoto and Tanaka (2015), Cheng et al. (2016), Su and Wang

(2017, 2020b), Fu et al. (2023), among others.

4.2 The test statistics

There are many ways to construct the test statistics for testing H(1)
0 , H(2)

0 , and H(3)
0 . Here we propose

some convenient test statistics based on the asymptotic results obtained in the last section.

Under H(1)
0 , we can follow Bai (2009) and Moon and Weidner (2017) to estimate the conventional

time-invariant panel data models with the standard IFEs to obtain the constrained estimators β̃0,

λ̃i0 and F̃t of β0, λi0 and F 0
t , respectively. We use β̃

bc
0 to denote the bias-corrected version of β̃0.

One may be tempted to construct a test statistic based on the squared L2-distance between the

unrestricted estimates (β̂
bc

t , λ̂it) under H(1)
A and the restricted estimates (β̃

bc
t , λ̃i) under H(1)

0 . But

due to the difference of the rotational matrices appearing in the probability limits of λ̂it and λ̃i, it is

extremely difficult to study such a test statistic. For this reason, we propose to consider the squared

L2-distance between X ′itβ̂
bc

it + λ̂
′
itF̂t and X ′itβ̃

bc
i0 + λ̃

′
i0F̃t, where the rotational matrices will not play a

role asymptotically. Define the residuals under H(1)
0 and H(1)

A respectively as

ε̃it = Yit −X ′itβ̃
bc
0 − λ̃

′
i0F̃t and ε̂it = Yit −X ′itβ̂

bc

t − λ̂
′
itF̂t.

Noting that the distance between X ′itβ̂
bc

t + λ̂
′
itF̂t and X ′itβ̃

bc
0 + λ̃

′
i0F̃t is the same as that between ε̂it

and ε̃it, we propose to consider the following test statistic

M̂ (1) =
1

NT

N∑
i=1

T∑
t=1

(ε̂it − ε̃it)2

to test H(1)
0 against H(1)

A .

If we reject H(1)
0 , it is valuable to gauge the possible sources of rejection by testing H(2)

0 and H(3)
0

against their respective alternatives. Under H(2)
0 , we note that βt is time-invariant. Since β̂

bc

t is a

consistent estimator for βt = β0, it centers around β0 and so is its average β̂
bc
≡ 1

T

∑T
t=1 β̂

bc

t . Under

H(2)
A , β̂

bc

t centers around different values for different t. This motivates us to consider the following

test statistic

M̂ (2) =
1

T

T∑
t=1

∥∥∥∥β̂bct − β̂bc∥∥∥∥2

to test H(2)
0 against H(2)

A .
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To test H(3)
0 against H(3)

A , we define Ŵit = Yit − X ′itβ̂
bc

t . Then, we estimate the pure factor

model Ŵit = λ′itFt + ηit via the conventional PCA as in Bai (2003) and the local PCA of Su and

Wang (2017) to obtain the restricted estimates (λ̃
W
i0 , F̃

W
t ) and unrestricted estimates (λ̂

W

it , F̂
W
t ),

respectively. Then we consider the following test statistic

M̂ (3) =
1

NT

N∑
i=1

T∑
t=1

(
λ̂
W ′
it F̂

W
t − λ̃

W ′
i0 F̃

W
t

)2
.

Obviously, M̂ (l), l = 1, 2, 3, converge to zero in probability under the respective null hypotheses

and to a positive value under the respective global alternatives. We will study their asymptotic

distributions under their respective null hypotheses and sequences of local alternatives in the following

subsections.

It is worth mentioning that here we focus on test statistics based on the squared L2-distance

between constrained and unconstrained estimates, which are suitable for non-sparse alternatives. Of

course, one can also consider the supremum-type statistics that appear to be more appropriate to

detect sparse alternatives; see, e.g., Xu (2022) for testing the time-invariance of factor loadings in a

pure factor model.

4.3 Asymptotic null distributions

In this subsection, we study the asymptotic distributions of M̂ (1), M̂ (2), and M̂ (3) under their re-

spective null hypotheses.

Under H(1)
0 , we can apply Bai (2009) and Moon and Weidner (2017) to estimate the null model

to obtain the bias-corrected estimator β̂
bc

of β0 and the restricted estimators F̃ = (F̃1, ..., F̃T )′ and

Λ̃ = (λ̃1, ..., λ̃N )′ of the factor matrix F and factor loading matrix Λ0 = (λ10, ..., λN0)′. Let ṼNT

denote the R × R diagonal matrix of the first R largest eigenvalues of (NT )−1 W̃W̃ ′ in decreas-

ing order, where W̃ = (W̃1, · · · , W̃N ) with W̃i = Yi − Xiβ̂
bc

, and H = (N−1Λ′0Λ0)(T−1F
′
F̃ )Ṽ −1

NT .

Let H0 denote the probability limit of H under H(1)
0 . Note that it is also the probability lim-

it of H(t) under H(1)
0 (or the local alternative H(1)

0 (aNT ) specified in the next subsection). Let

Lst = k∗h,stH
(t)H(t)′ −HH ′. Let ξh,sr ≡ 1

T

∑T
t=1 F

′
rH0H

′
0k
∗
h,stk

∗
h,rtFtF

′
tH0H

′
0Fs. Let fsr = F ′rΣ

−1
F Fs.

Let X (t)
i,s = Xis− 1

N

∑N
j=1EC(Xjs)a

(t)
ji −

1
T

∑T
r=1 k

∗
h,rtfsrEC(Xjr) + 1

NT

∑T
r=1

∑N
j=1 k

∗
h,rtf

(t)
sr a

(t)
ji EC(Xjr),

ς ij,sr = 1
T

∑T
t=1 k

∗
h,stk

∗
h,rtX

(t)′
is [D

(t)
0 ]−1 [D

(t)
0 ]−1X (t)

jr , and D(t) = [D(t)(F (t))]−1[D(t)(F (t))]−1. Define

B(1)
NT =

h1/2

N1/2T 2

N∑
i=1

T∑
t,s,r=1

F ′tLstFsF
′
rL
′
rtFtEC(εisεir),

B(2)
1,NT =

h1/2

NT

N∑
i=1

T∑
s,r=1

εisεirς ii,sr, B
(2)
2,NT =

2h1/2

NT 2

∑
1≤j<i≤N

T∑
t=1

T∑
s=1

k∗2h,stεisεjsX
(t)′
is D(t)X (t)

js ,

B(2)
NT = B(2)

1,NT + B(2)
2,NT ,
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V(1)
NT =

h

N

N∑
i=1

EC

 1

T

T∑
s,r=1

ξh,srεisεir

2

, and V(2)
NT =

4h

N2T 2

∑
1≤i<j≤N

EC

 ∑
1≤s 6=r≤T

εisεjrς ij,sr

2

,

To proceed, we impose an additional condition.

Assumption A.11 (i) For each i ∈ [N ], {(Xit, εit) : t = 1, 2, ...} is conditionally strong mix-

ing given C with mixing coefficients {αCNT,i (·)}. αC (·) ≡ αCNT (·) ≡ max1≤i≤N α
C
NT,i (·) satisfies∑∞

j=1 j
6 [αC (j)]

η
2+η ≤ C <∞ a.s.

(ii) (εi, Xi) , i ∈ [N ], are mutually independent of each other conditional on C.

Assumption A.11(i) imposes that the process {(Xit, εit)} is conditionally strong mixing. For the

definition of conditional strong mixing, see Prakasa Rao (2009). For the application of this concept in

econometrics, see Hahn and Kuersteiner (2011), Su and Chen (2013), and Lu and Su (2016), among

others. Assumption A.11(ii) imposes conditional independence of (εi, Xi) across i given C. This

allows for unconditional cross-sectional dependence of (εi, Xi) via C. For example, if εit = σ0 (Ft) εit

for some measurable function σ0 (·) and zero-mean process {εit} that are independent over i, εit

can be cross-sectionally independent conditional on C as along as εit’s are independent across i. But

unconditionally, εit’s are dependent across i.

The following theorem states the asymptotic null distributions of our test statistics M̂ (l), l =

1, 2, 3, after being properly normalized.

Theorem 4.1 (Asymptotic null distributions) Suppose that Assumptions A.1–A.11 hold. Let B(3)
NT =

B(1)
NT and V(3)

NT = V(1)
NT . Suppose NTh5 = O (1) in (i) and (iii) below and NTh9/2 = o (1) in (ii)

below. Then

(i) J
(1)
NT ≡ [V(1)

NT ]−1/2
(
TN1/2h1/2M̂ (1) − B(1)

NT

)
d→ N (0, 1) under H(1)

0 ,

(ii) J
(2)
NT ≡ [V(2)

NT ]−1/2
(
TNh1/2M̂ (2) − B(2)

NT

)
d→ N (0, 1) under H(2)

0 ,

(iii) J
(3)
NT ≡ [V(3)

NT ]−1/2
(
TN1/2h1/2M̂ (3) − B(3)

NT

)
d→ N (0, 1) under H(3)

0 .

Theorem 4.1 indicates that all of the three normalized test statistics follow the standard nor-

mal distribution asymptotically under the corresponding null hypotheses. The asymptotic bias and

variance of TN1/2h1/2M̂ (3) are the same as those of TN1/2h1/2M̂ (1). This is due to the faster con-

vergence rate of the estimator of βt than that of the factors and factor loadings under the ad-

ditional bandwidth condition NTh5 = O (1) . As Theorem 3.4(ii) implies, when NTh5 = O (1) ,

maxt

∥∥∥β̂bct − βt∥∥∥ = OP
(
(NTh/ lnT )−1/2

)
. With this result, we can show the estimation error of β̂

bc

t

does not contribute to the asymptotic bias of M̂ (1) and M̂ (3).

Theorem 4.1(ii) requires a stronger condition on the bandwidth, namely, NTh9/2 = o (1) . This

condition helps to eliminate the effect of the asymptotic bias due to the nonparametric kernel es-

timation in both β̂
bc

t and λ̂it. Intuitively, the asymptotic bias of such estimators, which is of order

O
(
h2
)
, has to be controlled as o

(
(NT )−1/2h−1/4

)
in order to ignore their effect on the asymptotic

21



distribution of M̂ (2). We emphasize that even under H(2)
0 , the asymptotic bias of β̂

bc

t is still O
(
h2
)

because we do not restrict λit to be time-invariant here and the estimation of λit, whose bias term

is O(h2), enters the bias of β̂
bc

t . The use of undersmoothing bandwidth to eliminate the effect of a

kernel-based estimator’s bias is standard in the nonparametric literature. In fact, Su and Hoshino

(2016) also use such an idea to eliminate the effect of the bias of sieve estimators in testing the

constancy of functional coefficients in a cross-section setup.

To implement these tests, we need to estimate both the asymptotic biases B(l)
NT and the asymptotic

variances V(l)
NT for l = 1, 2, 3. Let ε̂is = Yis − X ′isβ̂

bc

s − λ̂
′
isF̂s, ξ̂h,sr = 1

T

∑T
t=1 k

∗
h,stk

∗
h,rtF̃

′
rF̂tF̂

′
t F̃s,

η̂it,s = (k∗h,stF̂
′
sF̂t − F̃ ′sF̃t)ε̂is, Γ̂it,j = T−1

∑T
s=j+1 η̂it,sη̂it,s−j , and Ξ̂it = Γ̂it,0 + 2

∑lT
j=1wTjΓ̂it,j . Here,

lT is a truncation parameter and wTj is a weighting function. We will impose some restrictions later.

We propose to estimate B(1)
NT and V(1)

NT by

B̂(1)
NT = B̂(3)

NT =
h1/2

N1/2T

N∑
i=1

T∑
t=1

Ξ̂it =
h1/2

N1/2T 2

N∑
i=1

T∑
t,s=1

η̂2
it,s +

2h1/2

N1/2T 2

N∑
i=1

T∑
t=1

lT∑
j=1

wTj

T∑
s=j+1

η̂it,sη̂it,s−j ,

V̂(1)
NT = V̂(3)

NT =
h

N

N∑
i=1

 1

T

T∑
s,r=1

ξ̂h,srε̂irε̂is

2

.

Let X̄j = 1
T

∑T
t=1Xjt, â

(t)
ji = λ̂

′
jt(Λ̂

′
tΛ̂t/N)−1λ̂it, f̂sr = F̂ ′rF̂s, and X̂ (t)

i,s = Xis−N−1
∑N

j=1 X̄j â
(t)
ji −

T−1
∑T

r=1 kh,rtf̂srX̄i+N−1T−1
∑T

r=1

∑N
j=1 kh,rtf̂srâ

(t)
ji X̄j . Let ς̂ ij,sr = 1

T

∑T
t=1 k

∗
h,stk

∗
h,rtX̂

(t)′
is D̂(t)X̂ (t)

jr

where D̂(t) = [D̂(t)(F̂ (t))]−1[D̂(t)(F̂ (t))]−1. We propose to estimate B(2)
NT and V(2)

NT respectively by

B̂(2)
NT = B̂(2)

1,NT + B̂(2)
2,NT and V̂(2)

NT =
2h

N2T 2

∑
1≤i 6=j≤N

 T∑
s,r=1

ε̂isε̂jr ς̂ ij,sr

2

,

where B̂(2)
1,NT = h1/2

NT

∑N
i=1

∑T
s,r=1 ε̂isε̂ir ς̂ ii,sr and B̂(2)

2,NT = 2h1/2

NT 2

∑
1≤j<i≤N

∑T
t,s=1 k

∗2
h,stε̂isε̂jsX̂

(t)′
is D̂(t)X̂ (t)

js .

We define the feasible test statistics as follows:

Ĵ
(l)
NT =

[
V̂(l)
NT

]−1/2 (
TN1/2h1/2M̂ (l) − B̂(l)

NT

)
for l = 1, 3 and Ĵ

(2)
NT =

[
V̂(2)
NT

]−1/2 (
TNh1/2M̂ (2) − B̂(2)

NT

)
.

To guarantee the consistency of the estimated bias and variance terms, we introduce the following

assumption.

Assumption A.12 (i) supj |wTj | ≤ cw <∞ and limT→∞wTj = 1 for each j.

(ii) As (N,T )→∞, lT (Nh)1/2C−2
NT = o(1), and l3T /T = o(1).

(iii) There exists a0 > 0 such that (Nh)1/2l−a0T = o(1), and
∑∞

j=lT+1 j
a0 [αC (j)]

3+2η
4+2η ≤ C < ∞

a.s.

Assumption A.12 imposes some conditions on wTj and lT . The following theorem establishes the

consistency of B̂(l)
NT and V̂(l)

NT and the asymptotic normality of Ĵ
(l)
NT with l = 1, 2, 3.
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Theorem 4.2 (Feasible test statistics) Suppose that Assumptions A.1–A.12 hold. Suppose NTh5 =

O (1) in (i) and (iii) below and NTh9/2 = o (1) in (ii) below. Then

(i) B̂(1)
NT = B(1)

NT + oP (1) , V̂(1)
NT = V(1)

NT + oP (1) , and Ĵ
(1)
NT

d→ N (0, 1) under H(1)
0 ,

(ii) B̂(2)
NT = B(2)

NT + oP (1) , V̂(2)
NT = V(2)

NT + oP (1) , and Ĵ
(2)
NT

d→ N (0, 1) under H(2)
0 ,

(iii) B̂(3)
NT = B(3)

NT + oP (1) , V̂(3)
NT = V(3)

NT + oP (1) , and Ĵ
(3)
NT

d→ N (0, 1) under H(3)
0 .

Theorem 4.2 shows that all of our test statistics follow the asymptotic standard normal distri-

bution and are asymptotically pivotal. We can compare the results of Ĵ
(l)
NT with l = 1, 2, 3 with the

critical value zα, the upper α-percentile of the N(0, 1) distribution, as the tests are one-sided, and

reject the null hypothesis at significance level α when Ĵ
(l)
NT > zα. Alternatively, to improve the finite

sample performance of the tests, we propose suitable bootstrap procedures to obtain the bootstrap

critical values or p-values. See Section 4.5 below.

4.4 Asymptotic local power properties

To study the asymptotic local power properties of our tests, we consider the following sequences of

local alternatives:

H(1)
A (aNT ) : λit = λi0 + a1NT gi

(
t

T

)
and βt = β0 + a2NT g0

(
t

T

)
for each i and t,

H(2)
A (a2NT ) : βt = β0 + a2NT g0

(
t

T

)
for each t,

H(3)
A (a1NT ) : λit = λi0 + a1NT gi

(
t

T

)
for each i and t,

where aNT = (a1NT , a2NT ), a1NT → 0 and a2NT → 0 as (N,T ) → ∞, a1NT and a2NT control

the speeds at which the local alternatives converge to the null hypotheses, and g0(·) and gi (·) are

vector-valued piecewise smooth functions with finite numbers of discontinuity points. Noting that

λi0 + a1NT gi(
t
T ) = (λi0 + ci,NT ) + a1NT [gi(

t
T ) − ci,NT /a1NT ] for any ci,NT = O (a1NT ) , below we

will assume that
∫ 1

0 gi (u) du = 0 for the location normalization purpose. Similarly, we also assume∫ 1
0 g0 (u) du = 0. With this normalization, both (λi0, β0) and (gi (·) , g0 (·)) can depend on the sample

sizes N and T. But for notational simplicity, we continue to write them as λi0, β0, gi (·) , and g0 (·)
instead of λi0,NT , β0,NT , gi,NT (·) , and g0,NT (·).

Let Λ0 = (λ10, ..., λN0)′ and a
(0)
ij = λ′i0(N−1Λ′0Λ0)−1λj0. Define

D (F ) =
1

NT

N∑
i=1

X ′iMFXi −
1

T

 1

N2

N∑
i=1

N∑
j=1

X ′iMFXja
(0)
ij

 .
Let git = gi(

t
T ) and g†it = F ′tgi(

t
T ) for i = 0, 1, ..., N. Let g†t = (g†1t, ..., g

†
Nt)
′. Let πNT = (πNT,1, ..., πNT,P )′

where πNT,p = 1
NT tr(MFXpMΛ0∆′0) for p ∈ [P ], and ∆0 is a T ×N matrix with the (t, i)th element
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given by X ′itg0t. Define

Π
(1)
1 = plim

(N,T )→∞
T−1

T∑
t=1

tr
[(
N−1Λ′0g

†
t

)(
N−1g†′t Λ0

) (
H−1

0

)′
V −1

0 H−1
0 ΣΛ0

(
H−1

0

)′
V −1

0 H−1
0

]
,

Π
(1)
2 = lim

(N,T )→∞
(NT )−1

N∑
i=1

T∑
t=1

tr
(
ΣF gitg

′
it

)
,

Π
(1)
3 = plim

(N,T )→∞
(NT )−1

N∑
i=1

T∑
t=1

{
X ′it[g0t −D (F )−1 πNT ]

}2
, and

Π(2) = lim
T→∞

T−1
T∑
t=1

‖g0t‖2 .

To study the asymptotic power properties of Ĵ
(l)
NT , l = 1, 2, 3, we impose the following assumption:

Assumption A.13 (i) For each i ∈ [N ], gi(·) and g0(·) are piecewise continuous functions with

finite numbers of discontinuous points on (0,1];

(ii) max1≤r≤T

∥∥∥ 1
NT

∑T
s=1

∑N
i=1 kh,srFsεisg

′
ir

∥∥∥ = OP ((NTh/ ln(NT ))−1/2).

(iii) The (probability) limits Π
(1)
1 , Π

(1)
2 , Π

(1)
3 and Π(2) exist and are finite.

Assumption A.13 allows the slope coefficients and factor loadings to change smoothly over time

or abruptly at a finite number of unknown discontinuity points. In either case, we assume that the

factor loadings and the slope coefficients are uniformly bounded to facilitate the asymptotic analysis.

The following theorem studies the asymptotic local power property of Ĵ
(l)
NT for l = 1, 2, 3.

Theorem 4.3 (Asymptotic local powers) Suppose that Assumptions A.1–A.13 hold. Let a1NT =

N−1/4T−1/2h−1/4 and a2NT = (NT )−1/2h−1/4. Suppose NTh5 = O (1) in (i) and (iii) below and

NTh9/2 = o (1) in (ii) below. Let Π(1) = Π
(1)
1 +Π

(1)
2 +Π

(1)
3 , Π(3) = Π

(1)
1 +Π

(1)
2 , V(l)

0 = lim(N,T )→∞V(l)
NT

and π(l) = Π(l)/(V(l)
0 )1/2 for l ∈ [3] . Then

(i) B̂(1)
NT = B(1)

NT + oP (1) , V̂(1)
NT = V(1)

NT + oP (1) , and Ĵ
(1)
NT

d→ N
(
π(1), 1

)
under H(1)

A (a1NT ) ,

(ii) B̂(2)
NT = B(2)

NT + oP (1) , V̂(2)
NT = V(2)

NT + oP (1) , and Ĵ
(2)
NT

d→ N
(
π(2), 1

)
under H(2)

A (a2NT ) ,

(iii) B̂(3)
NT = B(3)

NT + oP (1) , V̂(3)
NT = V(3)

NT + oP (1) , and Ĵ
(3)
NT

d→ N
(
π(3), 1

)
under H(3)

A (a1NT ) .

Theorem 4.3 indicates that Ĵ
(1)
NT and Ĵ

(3)
NT can detect local alternatives converging to the respective

null hypotheses at the rate of N−1/4T−1/2h−1/4, which is also attainable in Su and Wang (2017) for

testing time-invariant factor loadings. This rate is also comparable with the rate N−1/4T−1/2 of Su

and Chen’s (2013) parametric test for the homogeneity of slope coefficients in panel data models with

IFEs. Interestingly, Ĵ
(2)
NT has power to detect local alternatives converging to H(2)

0 at a faster rate

(NT )−1/2h−1/4 under a more restrictive condition on the bandwidth than the other two tests. This

rate is comparable with the rate of local alternatives detected by Su and Hoshino’s (2016) sieve-based

test for the constancy of functional coefficient in the cross-section setup.
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4.5 Bootstrap versions of the tests

As is well known, the kernel-based nonparametric test may be oversized in finite samples, as the

asymptotic null distribution may not approximate its finite sample distribution well. Therefore, we

propose bootstrap versions of our tests in this subsection.

Since we assume conditional cross-sectional independence in Assumption A.11(ii) and allow for

conditional heteroskedasticity when we derive the asymptotic distributions of our test statistics under

the null and local alternatives. we can follow the lead of Hansen (2000) and Gonçalves and Kilian

(2004) and consider the fixed-regressor wild bootstrap to generate the bootstrap samples.

For our Ĵ
(1)
NT test, we consider the following bootstrap procedure:

1. Estimate the restricted model Yit = X ′itβ0 + λ′i0Ft + ε†it by Bai’s (2009) method and the unre-

stricted model Yit = X ′itβt + λ′itFt + εit by the LLS method to obtain the two sets of estimates

{β̃bc0 , λ̃i0, F̃t} and {β̂bct , λ̂it, F̂t}. Let ε̃it denote the restricted residuals. Construct the test s-

tatistic Ĵ1NT as in Section 4.2.

2. For i ∈ [N ] and t ∈ [T ], obtain the bootstrap error ε∗it = ε̃itς it, where ς it are i.i.d. N (0, 1)

across i and t. Generate Y ∗it = X ′itβ̃
bc
0 + λ̃

′
i0F̃t + ε∗it.

3. Use {Y ∗it , Xit} to run the restricted and unrestricted models to obtain the bootstrap versions

{β̃bc,∗0 , λ̃
∗
i0, F̃

∗
t } and {β̂bc,∗t , λ̂

∗
it, F̂

∗
t } of {β̃bc0 , λ̃i0, F̃t} and {β̂bct , λ̂it, F̂t}, respectively. Calculate the

bootstrap test statistic Ĵ∗1NT , a bootstrap version of Ĵ1NT .

4. Repeat steps 2 and 3 for B times and index the bootstrap test statistics as {Ĵ∗1NT,l}Bl=1. The

bootstrap p-value is calculated by p∗1 ≡ B−1
∑B

l=1 1{Ĵ∗1NT,l > Ĵ1NT }.

For our Ĵ
(2)
NT test, we consider the following bootstrap procedure:

1. Estimate the unrestricted model Yit = X ′itβt + λ′itFt + εit by the LLS method to obtain the

estimates {β̂bct , λ̂it, F̂t}, and denote
¯̂
βbc = T−1

∑T
t=1 β̂

bc

t . Let ε̃it denote the restricted residuals.

Based on these estimates, construct the test statistic Ĵ2NT as in Section 4.2.

2. For i ∈ [N ] and t ∈ [T ], obtain the bootstrap error ε∗it = ε̃itς it, where ς it are i.i.d. N (0, 1)

across i and t. Generate Y ∗it = X ′it
¯̂
βbc + λ̂

′
itF̂t + ε∗it.

3. Use {Y ∗it , Xit} to run the unrestricted model to obtain the bootstrap versions {β̂bc,∗t , λ̂
∗
it, F̂

∗
t } of

{β̂bct , λ̂it, F̂t}. Calculate the bootstrap test statistic Ĵ∗2NT , a bootstrap version of Ĵ2NT .

4. Repeat steps 2 and 3 for B times and index the bootstrap test statistics as {Ĵ∗2NT,l}Bl=1. The

bootstrap p-value is calculated by p∗2 ≡ B−1
∑B

l=1 1{Ĵ∗2NT,l > Ĵ2NT }.

For our Ĵ
(3)
NT test, we consider the following bootstrap procedure:
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1. Estimate the unrestricted model Yit = X ′itβt + λ′itFt + εit by the LLS method to obtain the

estimates {β̂bct , λ̂it, F̂t}. Denote Wit = Yit − X ′itβ̂
bc

t . Then estimate the restricted pure factor

model Wit = λ′i0Ft+ε
†
it by the PCA method to obtain the estimates {λ̃i0, F̃t}. Let ε̃it denote the

restricted residuals. Based on these estimates, construct the test statistic Ĵ3,NT as in Section

4.2.

2. For i ∈ [N ] and t ∈ [T ], obtain the bootstrap error ε∗it = ε̃itς it, where ς it are i.i.d. N (0, 1)

across i and t. Generate Y ∗it = X ′itβ̂
bc

t + λ̃
′
itF̃t + ε∗it.

3. Use {Y ∗it , Xit} to run the restricted and unrestricted models to obtain the bootstrap versions

{β̃bc,∗0 , λ̃
∗
i0, F̃

∗
t } and {β̂bc,∗t , λ̂

∗
it, F̂

∗
t } of {β̃bc0 , λ̃i0, F̃t} and {β̂bct , λ̂it, F̂t}, respectively. Calculate the

bootstrap test statistic Ĵ∗3NT , a bootstrap version of Ĵ3NT .

4. Repeat steps 2 and 3 for B times and index the bootstrap test statistics as {Ĵ∗3NT,l}Bl=1. The

bootstrap p-value is calculated by p∗3 ≡ B−1
∑B

l=1 1{Ĵ∗3NT,l > Ĵ3NT }.

Although we allow serial correlation in the error terms in the original data, we do not mimic

such a serial dependence structure in the error term in the bootstrap world. We can do so because

our normalized statistics are asymptotically pivotal. Alternatively, one may consider the dependent

wild bootstrap (DWB) procedure that was proposed and studied by Shao (2010) and Leucht and

Neumann (2013) to mimic the serial dependence in the error terms. See Fu et al. (2023) for an

application of DWB in specification tests for time series models.

The following theorem establishes the asymptotic validity of the above bootstrap procedures.

Theorem 4.4 (Asymptotic validity of the bootstrap procedures) Suppose that Assumptions A.1–A.8

and A.11–A.12 hold. Suppose that (i) 1
T

∑T
t=1

∥∥∥F̃t∥∥∥8
= OP (1) and (ii) 1

N

∑N
i=1

∥∥∥λ̃i0∥∥∥8
= OP (1) .

Then Ĵ∗lNT
D∗→ N (0, 1) in probability for l ∈ [3], where

D∗→ denotes weak convergence under the

bootstrap probability measure conditional on the observed sample Y and X.

Theorem 4.4 shows that the above bootstrap procedures provide asymptotic valid approximations

to the limit null distributions of ĴlNT , l ∈ [3]. This holds because we generate the bootstrap data

by imposing the respective null hypotheses. If the null hypothesis does not hold in the original data,

then we expect Ĵ1NT and Ĵ3NT to explode at the rate T 1/2N1/4h1/4 and Ĵ2NT to explode at the rate

T 1/2N1/2h1/4, which delivers the consistency of the bootstrap-based test Ĵ∗lNT , l ∈ [3] . The extra

conditions (i)-(ii) in the above theorem can be easily verified if the original data satisfies either the

null hypotheses or the local alternative hypotheses studied above.

5 Monte Carlo Simulations

In this section, we study the finite sample performance of our estimates and tests through Monte

Carlo simulations.
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5.1 Data generating processes (DGPs)

We generate the data using the following model:

Yit = X ′itβt + λ′itFt + εit,

where Xit = (Xit,1, Xit,2)′ is the observed covariate vector, Ft = (Ft1, Ft2)′ is the unobserved factor,

and εit is the error term. Both Ft1 and Ft2 are autoregressive processes of order one (AR(1)) with

unit variances: Ft1 = 0.6Ft−1,1 + ut1 with ut1 ∼ i.i.d.N(0, 1 − 0.62), and Ft2 = 0.3Ft−1,2 + ut2 with

ut2 ∼ i.i.d.N(0, 1 − 0.32). Xit may or may not be independent of Ft. We consider three types

of error terms: (1) the i.i.d. case, where εit ∼ i.i.d. N(0, 1); (2) the heteroskedastic case, where

εit = σivit, with σi ∼ i.i.d. U(0.5, 1.5) and vit ∼ i.i.d. N(0, 1); (3) the serially dependent case, where

εit = 0.5εi,t−1 + εt with εt ∼ i.i.d. N(0, 1− 0.52).

For the coefficients βt = (β1t, β2t)
′ and the factor loadings λit = (λit,1, λit,2)′, we consider the

following six DGPs. Note that when we say Xit ∼ AR(1), we mean that Xit,1 = 0.7Xi,t−1,1 + uit,1

with uit,1 ∼ i.i.d. N(0, 1− 0.72) and Xit,2 = 0.4Xi,t−1,2 + uit,2 with uit,2 ∼ i.i.d. N(0, 1− 0.42).

DGP 1 (Time-invariant slope and factor loadings, Xit is independent of Ft)

β1t = 0.75, β2t = 0.25, λit = λi,0 ∼ i.i.d. N(0, I2),

Xit ∼ AR(1), independent of Ft.

DGP 2 (Time-invariant slope, TV factor loadings, Xit is independent of Ft)

β1t = 0.75, β2t = 0.25,

λit,1 = λi0,1 ∼ i.i.d. N(0, 1), λit,2 = cos(π(t/T + i/N)),

Xit ∼ AR(1), independent of Ft.

DGP 3 (Time-invariant slope, TV factor loadings, Xit depends on Ft)

β1t = 0.75, β2t = 0.25,

λit,1 = λi0,1 ∼ i.i.d. N(0, 1), λit,2 = cos(π(t/T + i/N)),

Xit = 0.5γ′iFt + 0.5uit, with γi ∼ i.i.d. N(0, 1) and uit ∼ i.i.d. N(0, 1).

DGP 4 (TV slope, time-invariant factor loadings, Xit is independent of Ft)

β1t = sin(0.5πt/T ), β2t = 2(t/T − 0.8)2,

λit = λi0 ∼ i.i.d. N(0, I2),

Xit ∼ AR(1), independent of Ft.
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DGP 5 (TV slope, TV factor loadings, Xit is independent of Ft)

β1t = sin(0.5πt/T ), β2t = 2(t/T − 0.8)2,

λit,1 = λi0,1 ∼ i.i.d. N(0, 1), λit,2 = cos(π(t/T + i/N)),

Xit ∼ AR(1), independent of Ft.

DGP 6 (TV slope, TV factor loadings, Xit depends on Ft)

β1t = sin(0.5πt/T ), β2t = 2(t/T − 0.8)2,

λit,1 = λi0,1 ∼ i.i.d. N(0, 1), λit,2 = cos(π(t/T + i/N)),

Xit = 0.5γ′iFt + 0.5uit, with γi ∼ i.i.d. N(0, 1) and uit ∼ i.i.d. N(0, 1).

The above six DGPs describe various specifications of the regression coefficients, factor loadings,

and dependence structure between Xit and Ft. DGP 1 specifies a panel data model with time-

invariant coefficients and factor loadings, which is also considered in Bai (2009). DGPs 2-3 have time-

invariant coefficients and TV factor loadings. DGPs 4-6 are panel data models with TV coefficients,

in which the factor loadings are specified as time-invariant in DGP 4 and TV in DGPs 5-6. We note

that in DGPs 3 and 6, Xit is correlated with Ft, which is a reasonable setting for macroeconomic

datasets. In this case, we expect that Bai’s (2009) estimator should yield an inconsistent estimate

since it treats factor loadings as time-invariant, and thus the error term may contain variations in

the factors.

5.2 Determination of the number of common factors

In this subsection, we examine the finite sample performance of the IC in (3.3) to determine the

number of common factors in the TV panel model with TV IFEs. Specifically, we consider the

following two information criteria:

IC1(R) = lnV (R) +R

(
N + Th

NTh

)
ln

(
NTh

N + Th

)
, and

IC2(R) = lnV (R) +R

(
N + Th

NTh

)
lnC2

NT ,

where V (R) is the objective function given in (3.2). For each DGP, we generate 500 data sets with

sample sizes N = T = 40, 60, 80, 100. We use the Epanechnikov kernel and the Silverman’s rule of

thumb (RoT) bandwidth h = (2.35/
√

12)T−1/5N−1/10. We have also tried the Uniform kernel and

the Quartic kernel, and the RoT bandwidth with different tuning parameters. Our simulation studies

show that the choice of kernel function and the bandwidth have little impact on the performance of

our information criteria.

We use two measures to evaluate the IC, i.e., the average number of common factors and the
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empirical probability of correct selection over 500 replications. Tables 1 and 2 report the empirical

probability of correct selection and the average number of common factors, respectively. We note that

our information criteria work well when the sample sizes N and T are large. When the sample sizes

are small, they tend to overestimate the number of common factors. The poor performance of our

information criteria in the small T case can be attributed to the use of nonparametric estimation for

the TV slope coefficient and TV factor loadings. In addition, we find that IC2 tends to outperform

IC1 when the sample sizes are small. Hence, we suggest using IC2 if the sample sizes are not large

enough.

Table 1: Performance of information criteria in determining the number of factors: empirical
probabilities of correct selection

N = T = 40 N = T = 60 N = T = 80 N = T = 100

Error DGP IC1 IC2 IC1 IC2 IC1 IC2 IC1 IC2

1 0.038 0.156 0.300 0.730 0.860 0.986 0.998 1.000

2 0.204 0.532 0.790 0.964 0.992 1.000 1.000 1.000

(1) 3 0.214 0.466 0.788 0.954 0.992 0.998 1.000 1.000

4 0.054 0.262 0.492 0.862 0.948 1.000 1.000 1.000

5 0.366 0.664 0.872 0.986 1.000 1.000 1.000 1.000

6 0.266 0.558 0.850 0.962 0.994 1.000 1.000 1.000

1 0.010 0.076 0.198 0.572 0.730 0.966 0.988 1.000

2 0.100 0.316 0.540 0.846 0.932 0.988 0.998 1.000

(2) 3 0.118 0.310 0.522 0.814 0.922 0.996 1.000 1.000

4 0.016 0.138 0.268 0.642 0.836 0.986 0.988 1.000

5 0.162 0.400 0.696 0.902 0.974 0.996 0.998 0.998

6 0.126 0.366 0.604 0.842 0.950 0.996 1.000 1.000

1 0.022 0.102 0.098 0.368 0.304 0.712 0.642 0.904

2 0.190 0.420 0.522 0.778 0.802 0.944 0.940 0.992

(3) 3 0.240 0.444 0.576 0.820 0.864 0.970 0.962 0.996

4 0.036 0.164 0.220 0.572 0.526 0.870 0.782 0.960

5 0.258 0.540 0.656 0.876 0.902 0.984 0.990 0.998

6 0.252 0.476 0.636 0.850 0.894 0.972 0.974 0.994

Notes: (i) IC1 and IC2 denote the information criteria with ρNT,1 = N+Th
NTh ln( NTh

N+Th) and ρNT,2 =
N+Th
NTh lnC2

NT respectively; (ii) The main entries report the empirical probability of correct selection
based on 500 replications.

5.3 The estimation of slope coefficients

We now compare LLS estimator with Bai’s (2009) least squares (LS) estimator, which assumes time-

invariant slope coefficients and factor loadings. Specifically, we evaluate the estimation performance
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Table 2: Performance of information criteria in determining the number of factors: average number
of factors

N = T = 40 N = T = 60 N = T = 80 N = T = 100

Error DGP IC1 IC2 IC1 IC2 IC1 IC2 IC1 IC2

1 2.962 2.844 2.700 2.27 2.140 2.014 2.002 2

2 2.796 2.468 2.210 2.036 2.008 2 2 2

(1) 3 2.786 2.534 2.212 2.046 2.008 2.002 2 2

4 2.946 2.738 2.508 2.138 2.052 2 2 2

5 2.634 2.328 2.128 2.014 2 2 2 2

6 2.730 2.438 2.150 2.038 2.006 2 2 2

1 2.990 2.924 2.802 2.428 2.270 2.034 2.012 2

2 2.900 2.676 2.460 2.154 2.068 2.012 2.002 2

(2) 3 2.882 2.690 2.478 2.182 2.078 2.004 2 2

4 2.984 2.862 2.732 2.358 2.164 2.014 2.012 2

5 2.838 2.600 2.304 2.098 2.026 2.004 2.002 2.002

6 2.874 2.630 2.396 2.158 2.050 2.004 2 2

1 2.978 2.898 2.902 2.632 2.696 2.288 2.358 2.096

2 2.810 2.580 2.478 2.222 2.198 2.056 2.060 2.008

(3) 3 2.760 2.556 2.424 2.180 2.136 2.030 2.038 2.004

4 2.964 2.836 2.780 2.428 2.474 2.130 2.218 2.040

5 2.742 2.456 2.344 2.124 2.098 2.016 2.010 2.002

6 2.748 2.524 2.364 2.150 2.106 2.028 2.026 2.006

Notes: (i) IC1 and IC2 denote the information criteria with ρNT,1 = N+Th
NTh ln( NTh

N+Th) and ρNT,2 =
N+Th
NTh lnC2

NT respectively; (ii) The main entries report the average number of factors based on 500
replications.
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using mean normed error (MNE) of the estimators for the slope matrix β = (β1, . . . , βT )′. The

normed error is calculated using the Frobenius norm. Specifically, we calculate MNE of a slope

coefficient matrix estimator β̂ by ‖β̂ − β0‖/
√
T . For each DGP, we simulate 500 data sets with

sample sizes N,T = 40, 60, 80, 100. We use the Epanechnikov kernel and Silverman’s rule of thumb

(RoT) bandwidth h = (2.35/
√

12)T−1/5N−1/10. For simplicity, we use the true number of factors

(R = 2) here.

Table 3: Finite-Sample Performance of the Slope Estimators

N = T = 40 N = T = 60 N = T = 80 N = T = 100

Type of Error DGP LLS LS LLS LS LLS LS LLS LS

1 0.0442 0.0239 0.0293 0.0150 0.0224 0.0115 0.0183 0.0096

2 0.0454 0.0275 0.0302 0.0179 0.0227 0.0131 0.0181 0.0101

(1) 3 0.0903 0.1774 0.0590 0.1776 0.0452 0.1896 0.0361 0.1958

4 0.0640 0.3336 0.0478 0.3363 0.0406 0.3378 0.0357 0.3387

5 0.0646 0.3337 0.0483 0.3363 0.0411 0.3378 0.0359 0.3387

6 0.1003 0.3393 0.0703 0.3407 0.0552 0.3412 0.0458 0.3411

1 0.0463 0.0244 0.0308 0.0158 0.0231 0.0120 0.0189 0.0099

2 0.0471 0.0274 0.0309 0.0179 0.0238 0.0137 0.0191 0.0106

(2) 3 0.0960 0.1751 0.0625 0.1813 0.0468 0.1912 0.0371 0.2064

4 0.0658 0.3336 0.0494 0.3363 0.0409 0.3378 0.0360 0.3387

5 0.0667 0.3338 0.0495 0.3364 0.0411 0.3378 0.0362 0.3387

6 0.1068 0.3401 0.0709 0.3405 0.0567 0.3406 0.0464 0.3414

1 0.0479 0.0264 0.0326 0.0174 0.0246 0.0128 0.0200 0.0101

2 0.0491 0.0296 0.0324 0.0187 0.0246 0.0142 0.0202 0.0117

(3) 3 0.0878 0.1679 0.0592 0.1809 0.0441 0.1854 0.0356 0.1961

4 0.0666 0.3336 0.0496 0.3363 0.0415 0.3378 0.0364 0.3387

5 0.0679 0.3339 0.0500 0.3364 0.0417 0.3378 0.0367 0.3387

6 0.1010 0.3391 0.0683 0.3398 0.0552 0.3410 0.0461 0.3411

Notes: The main entries report the mean normed errors (MNEs) based on 500 replications.

Table 3 reports the MNEs for Bai’s (2009) LS estimator and our LLS estimator with various

types of error terms based on 500 replications. We summarize some important findings from Table

3. First, as shown in the table, the MNEs of the LLS estimators decline rapidly for all six DGPs as

the sample sizes (N,T ) increase, confirming the consistent property of the LLS estimator. Second,

when both the regression coefficients and factor loadings are time-invariant as in DGP 1, the LS

estimator significantly outperforms the LLS estimator as expected. Third, in panel data models with

constant regression coefficients and TV factor loadings, the LS estimators may or may not outperform

the LLS estimator depending on whether the regressors and factors are uncorrelated. When the
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regressors and factors are uncorrelated as in DGP 2, the LS estimator typically outperforms the

LLS estimator because, in such a scenario, one can readily show the bias-corrected LS estimator

is still
√
NT -consistent and is asymptotically more efficient than the LLS estimator. In contrast,

when the observed regressors are correlated with the latent factors as in DGP 3, the LS estimator

yields an inconsistent estimator of the slope coefficient and underperforms vastly the consistent LLS

estimator. Fourth, when the slope coefficients are TV as in DGPs 4-6, the LLS estimator substantially

outperforms the LS estimator. Fifth, the above findings are also true irrespective of whether the error

terms are serially correlated or heteroskedastic.

5.4 The performance of the tests

To implement our tests, we apply the Epanechnikov kernel and the Silverman’s rule-of-thumb band-

width h = (2.35/
√

12)T−1/4N−1/4. We have also tried the Uniform kernel and the Quartic kernel,

and the rule-of-thumb bandwidth with different tuning parameters. Our simulation studies show

that the choice of kernel function has little impact on the performance of our test. However, the

empirical sizes are a bit sensitive to bandwidth selection. To alleviate this problem, we apply the

bootstrap procedure proposed in Section 4.5. We consider 500 replications with B = 200 bootstrap

resamples for the bootstrap-based test. Since the bootstrap procedure, combined with our LLS and

local PCA, is rather time-consuming, we consider two sample sizes here: N = T = 40, and 60. These

sample sizes are comparable to that of the empirical application in Section 6.

Table 4 reports the empirical rejection rates for the bootstrap-based tests. Note that H(1)
0 is true

for DGP 1, H(2)
0 is true for DGPs 1, 2, and 3, and H(3)

0 is true for DGPs 1 and 4. The rejection

rates in these cases serve as empirical sizes, while the rest are empirical powers. We summarize

some important findings from Table 4. First, the bootstrap tests can control the size reasonably well,

although our results exhibit some mild undersize distortions for some of the DGPs and test statistics.

Second, all three test statistics exhibit satisfactory empirical power even when the sample size is small

(N = T = 40). When the sample size increases to N = T = 60, the empirical power increases fast

and it approaches 1 in most cases. Third, when the error term is heteroskedastic or serially correlated

(error types (2) and (3), respectively), the results are qualitatively the same, meaning that the tests

are robust to heteroskedasticity and serial correlation in the error term.

6 An Empirical Application to the Phillips Curve

We apply our model and methodology to the analysis of the Phillips curve using a panel data set

of the US state-level unemployment rates and nominal wages. Specifically, we consider the following

regression:

wage growthit = βt unemploy rateit + λ′itFt + εit, (6.1)
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Table 4: Empirical Rejection Rates of the Bootstrapped Test Statistics

H(1)
0 H(2)

0 H(3)
0

N = T = 40 N = T = 60 N = T = 40 N = T = 60 N = T = 40 N = T = 60

ErrorDGP 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

1 0.026 0.060 0.032 0.062 0.054 0.098 0.054 0.086 0.020 0.048 0.030 0.056

2 0.738 0.816 0.954 0.972 0.060 0.124 0.050 0.106 0.732 0.820 0.958 0.974

(1) 3 0.620 0.716 0.892 0.946 0.040 0.086 0.042 0.082 0.694 0.790 0.918 0.966

4 0.994 0.998 1 1 1 1 1 1 0.022 0.036 0.034 0.058

5 0.990 0.996 1 1 1 1 1 1 0.696 0.790 0.950 0.978

6 0.794 0.902 0.974 0.984 1 1 1 1 0.620 0.720 0.916 0.938

1 0.022 0.068 0.042 0.092 0.046 0.088 0.052 0.086 0.024 0.060 0.032 0.072

2 0.634 0.758 0.972 0.984 0.058 0.106 0.052 0.094 0.640 0.760 0.992 1

(2) 3 0.462 0.556 0.910 0.952 0.046 0.082 0.038 0.072 0.548 0.652 0.942 0.984

4 0.994 0.998 1 1 1 1 1 1 0.020 0.042 0.032 0.050

5 0.954 0.976 1 1 1 1 1 1 0.562 0.684 0.984 0.996

6 0.682 0.786 0.984 0.990 1 1 1 1 0.502 0.612 0.932 0.944

1 0.042 0.086 0.064 0.142 0.056 0.102 0.048 0.092 0.028 0.092 0.060 0.132

2 0.732 0.846 0.988 1 0.052 0.096 0.062 0.132 0.744 0.862 0.980 0.998

(3) 3 0.624 0.772 0.942 0.968 0.028 0.072 0.038 0.082 0.732 0.824 0.962 0.996

4 0.992 1 1 1 1 1 1 1 0.040 0.082 0.042 0.078

5 0.968 0.992 1 1 1 1 1 1 0.702 0.782 0.978 0.988

6 0.782 0.874 0.990 0.994 1 1 1 1 0.642 0.740 0.952 0.978

Note: The main entries report the empirical rejection rates under each DGP based on 500 replications and

200 bootstrap resamples.
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where wage growth represents the year-over-year growth rate of nominal hourly wages and unemploy rate

represents the unemployment rate. The subscript i denotes state and t denotes quarter. Ft is the

R× 1 vector of unobserved common factors that affect wage growth. We allow the factor loading λit

to be varying over time. Note that (6.1) is the panel-data version of the original formulation of the

Phillips curve (Phillips, 1958). The coefficient βt gives us the slope of the Phillips curve. Recently,

there is a heated debate in the policy circle on the shape and the evolution of the Phillips curve (e.g.,

Hooper et al. , 2020; Del Negro et al., 2020). To shed some light on the TV nature of the Phillips

curve, we allow the slope coefficient to change over time.

We obtain the data from the Federal Reserve Economic Data (FRED). Monthly data are available

for the state-level unemployment rates (since 1976) and hourly wages (since 2007). From the latter,

we obtain the year-over-year wage growth rate. We transform monthly observations into quarterly

data, which is less noisy than the monthly series, by averaging the monthly observations. The

balanced panel data has 51 cross-sections over the time span of 57 quarters from 2008Q1 to 2022Q1.
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Figure 1: Slope Estimates of the Phillips Curve

We use the information criterion in (3.3) to determine the number of factors. Setting ρNT

to be either N+Th
NTh ln( NTh

N+Th) or N+Th
NTh lnC2

NT with CNT = min{
√
Th,
√
N,h−2} in (3.3) yields

the same estimate of R as R̂ = 2. Using h = (2.35/
√

12)(NT )−1/4 for M̂ (1) and M̂ (3) and h =

(2.35/
√

12)T−1/5N−1/10 for M̂ (2), we obtain the bootstrap p-values for testing H(1)
0 , H(2)

0 , and H(3)
0

respectively as 0.0000, 0.0401, and 0.0261. That is, the bootstrap versions of the test statistics reject
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all three null hypotheses at the 5% significance level. Overall, the US state-level data provide some

strong support for a TV slope of the Phillips curve and TV factor loadings. Figure 1 shows the

estimates of the slope of the Phillips curve obtained by LLS, LS, and the 95% pointwise confidential

interval for the LLS estimate by using a undersmoothing bandwidth to eliminate the nonparametric

kernel bias. The LS estimation treats both the slope and the factor loading as constant over time.

The estimated slope is almost flat, consistent with the conventional wisdom that the Phillips curve

has flattened after the 2008 global financial crisis (GFC). From the LLS estimates, we observe a

mild negative-sloping Phillips curve in the wake of GFC. The curve gradually flattens and the slope

fluctuates closely around zero between 2012 and 2017. Then the slope pivots to the positive territory,

indicating that the shocks to the economy in the past five years are mainly from the supply side (e.g.,

the Sino-US trade war and the supply-chain disruptions during the Covid-19 pandemic).

7 Conclusion

The panel data models with IFEs have been extensively investigated in the literature. However, the

conventional panel data models with IFEs assume the slope coefficients and the factor loadings to

be time-invariant, which may not be true in practice. In this paper, we introduce a TV dynamic

panel data model with TV unobservable IFEs, where the coefficients and factor loadings are allowed

to change smoothly over time. We propose a local version of the least squares and PCA method to

estimate the TV coefficients, TV factor loadings, and common factors simultaneously. We provide

a bias-corrected LLS estimator for the TV coefficients and establish the uniform convergence and

limiting distributions for all of the estimators in the large N and large T framework. We also propose

a BIC-type information criterion to determine the number of common factors in the IFEs, which is

robust to the structural changes in the coefficients and factor loadings. Based on the estimates, we

propose three test statistics to check the stability of slope coefficients and/or factor loadings. We

first construct an L2-distance-based test to check the stability of both slope coefficients and factor

loadings. If we reject the null hypothesis, it is meaningful to gauge possible sources of rejection.

We further propose two test statistics to check the stability of slope coefficients and factor loadings,

respectively. By construction, our tests can capture both smooth and abrupt structural changes in

the factor loadings and slope coefficients without knowing the number of breaks in the data.

Monte Carlo studies demonstrate the excellent performance of our estimators and the BIC-type

information criterion in determining the number of common factors. We also show the reasonable

size and excellent power of our tests in checking the time-invariance of slope coefficients and/or

factor loadings. In an application to the analysis of the Phillips curve using the U.S. state-level

unemployment rates and nominal wages, we find some evidence of the TV behavior of both the

factor loadings and slope coefficient.

Several extensions are possible. First, one can extend our model by allowing for the cross-sectional

heterogeneity in the slope coefficient. Since the panel data usually cover individual units sampled
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from different backgrounds and with different individual characteristics, it is possible that the slope

coefficients may exhibit cross-sectional heterogeneity. One can extend our slope coefficient from βt

to βit and propose relevant tests to check the existence of cross-sectional heterogeneity. Second, it

may be valuable to identify the types of structural changes, i.e., the smooth structural changes versus

abrupt structural breaks, in the loadings or the slope coefficients. Third, it is interesting to apply

our model and method to program evaluations and compare it with some existing methods such as

difference in difference and synthetic control. We will pursue some of these extensions in subsequent

studies.
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