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Preface

This note introduces asset pricing theory to Ph.D. students in finance. The emphasis
is put on dynamic asset pricing models that are built on continuous-time stochastic
processes.

It is very preliminary. Please let me know if you discover any mistake.

Shanghai, China, Junhui Qian
February 2019 jhqian@sjtu.edu.cn
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Chapter 1

Introduction to Asset Pricing
Theory

The theory of asset pricing is concerned with explaining and determining prices of
financial assets in a uncertain world.

The asset prices we discuss would include prices of bonds and stocks, interest
rates, exchange rates, and derivatives of all these underlying financial assets. Asset
pricing is crucial for the allocation of financial resources. Mispricing of financial
assets would lead to inefficiency in investment and consumption in the real economy.

The “uncertainty” in this book is, rather simplistically, described by proba-
bility distributions. A more sophisticated treatment would differentiate uncertainty
from risk as in Knight (1921). Here we treat uncertainty and risk as the same thing:
future variation that can be characterized by some distribution without ambiguity.
In this book, uncertainty is assumed in both how an asset would pay in the future
and how agents would discount the payoff.

In this book we also take the simplistic view that the uncertainty is given and
that it is not influenced by the evolution of prices. It is generally believed in the
investment community, however, that prices may affect future payoffs. For example,
a surge in stock price would lower financing cost for the company and boost future
earnings. We do not go into this direction.

In this first chapter, we get familiarized with some basic theoretical abstrac-
tions. Then we study no-arbitrage pricing in a simple context. Key concepts such as
state prices, risk-neutral probability, and stochastic discount factor, are introduced.
Finally, we connect the no-arbitrage pricing to a representative consumer problem
and endow the stochastic discount factor with economic meaning.

Classical asset pricing models, such as CAPM and APT (Arbitrage Pricing
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Theory), are discussed as special cases of modern asset pricing theory using stochas-
tic discount factor. A classical derivation of CAPM is offered in the Appendix.

1.1 Basic Abstractions

Commodity

A commodity is a “good” at a particular time and a particular place when a partic-
ular “state” happens. For a commodity to be interesting to economists, it must cost
something. Besides physical characteristics, the key characteristic of a commodity
is its availability in space and time, and conditionality. A cup of water in the desert
and another one in Shanghai, although physically the same, are different commodi-
ties. And an umbrella when it rains is also different from that when it does not. It
is in the sense of conditionality that we call a commodity a “contingent claim”.

In the real world, forwards and futures on oil, ores, gold, and other metals can
be understood as commodities. The price of these commodities are in US dollar. In
principle, a market of commodities can operate without any money. However, money
facilitates trading and more importantly, money is essential for the introduction of
a financial market. A commodity economy with a financial market, with much less
markets open, can achieve the same allocational efficiency with the Arrow-Debreu
(1954) competitive equilibrium.

Security

Security is financial commodity. Stocks, bonds, and their derivatives are all securi-
ties. The payoffs of physical goods are physical goods, but the payoffs of securities
may be simply money, as well as other securities. A financial market is a market
where securities are exchanged.

Suppose we live at time t, the next period is t+ 1. A security has

• price: pt

• payoff: xt+1 – a r.v.

For examples, we understand

• stock: xt+1 = pt+1 + dt+1, where dt+1 denotes dividend payment.

• bond (zero-coupon, riskless): xt+1 = 1.
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• forwards/futures (on a stock with strike price K, long position):

xt+1 = pt+1 −K.

• option (European, on a stock with strike price K)

long call: xt+1 = max{0, pt+1 −K}

long put: xt+1 = max{0, K − pt+1}.

For now, we assume xt+1 is a finite-dimensional discrete random variable, tak-
ing value in RS. In other words, there are S possible values for xt+1, (x

1, x2, · · · , xS)′,
corresponding to states s = 1, 2, · · · , S and probability π = (π1, π2, · · · , πS)′. We as-
sume πs > 0 for all s.

Portfolio

Suppose there are J securities in the market, with prices described by a vector
p = (p1, p2, . . . , pJ)

′, where pj is the price of security j. Individuals may build
portfolios of these securities. Mathematically, a portfolio is characterized by a J-
dimensional vector h ∈ RJ . The total price of a portfolio h is thus p′h.

We use a matrix to describe payoffs of all securities at time t+ 1:

X =


x′
1

x′
2
...
x′
J

 =


x1
1 x2

1 · · · xS
1

x1
2 x2

2 · · · xS
2

...
x1
J x2

J · · · xS
J

 .

Note that rows correspond to securities and columns correspond to states. The
payoff of a portfolio h at time t+ 1 is thus, X ′h.

Complete Market

If rank(X) = S, the financial market is complete, meaning that every payoff vector
in RS can be realized by trading these J securities. More formally, for all x ∈ RS,
there exists h ∈ RJ such that x = X ′h.

Definition 1.1.1 (Asset Span) For any financial market, the asset span is the
space spanned by columns of X ′:

M = {X ′h, h ∈ RJ} = span(X ′).

IfM = RS, the market is complete.
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1.2 No-Arbitrage Pricing

1.2.1 The Law of One Price

The law of one price (LOP) states that portfolios with the same payoff must have
the same price:

X ′h = X ′h̃ ⇒ p′h = p′h̃,

where p ∈ RJ is the price vector.

Theorem 1.2.1 A necessary and sufficient condition for LOP is: zero payoff has
zero price.

Proof : (1) If LOP holds, X ′(h− h̃) = 0 ⇒ p′(h− h̃) = 0. (2) If LOP does not
hold, then X ′h = X ′h̃ but p′h ̸= p′h̃, this is, there exists a h∗ such that X ′h∗ = 0
but p′h∗ ̸= 0.

Theorem 1.2.2 For any z ∈ M, there is a linear pricing functional q(z) iff LOP
holds.

Proof (1) Linear functional⇒ LOP holds. If LOP does not hold, then q(0) = ϵ ̸= 0,
then q(z + 0) = q(z) + ϵ, contradicting the definition of linear functional. (2) LOP
holds ⇒ linearity. For any z, z̃ ∈ M, we can find h and h̃ such that z = X ′h,
z̃ = X ′h̃. So αz + βz̃ = αX ′h+ βX ′h̃. So

q(αz + βz̃) = αp′h+ βp′h̃ = αq(z) + βq(z̃).

1.2.2 No Arbitrage

For a vector x = (x1, . . . , xn)
′, we define

x ≥ 0 if xi ≥ 0 for all i,

x > 0 if xi ≥ 0 for all i and xi > 0 for some i,

Definition 1.2.3 (Arbitrage) An arbitrage is a portfolio h that satisfies X ′h ≥ 0
and p′h < 0.

This definition of arbitrage is sometimes called strong arbitrage (LeRoy and Werner,
2001). An arbitrage portfolio generates nonnegative payoff but has a negative price.
If there are arbitrage opportunities, the market is obviously not stable or efficient.
The no-arbitrage assumption is thus a weak form of equilibrium or efficiency.
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Theorem 1.2.4 The payoff functional is linear and positive iff there is no arbitrage.

Proof (1) linear & positivity ⇒ no arbitrage: For any h that satisfies X ′h ≥ 0,
p′h = q(X ′h) ≥ 0. (2) no arbitrage ⇒ linear & positivity: no arbitrage ⇒ LOP ⇒
linearity, and positivity follows from z = X ′h ≥ 0 ⇒ q(z) = p′h ≥ 0, for any h.

Note that a functional is positive if it assigns nonnegative value to every positive
element of its domain. It is strictly positive if it assigns strictly positive value to
positive elements.

An Example

Let’s have some flavor of no-arbitrage pricing. Consider a financial market with a
money account, a stock, and an European call option on the stock with strike price
98. Suppose there are two future states. If state 1 realizes, the stock price declines
to 84 from the current price 100. If state 2 happens, the stock price rises to 112.
Suppose the interest rate on the money account is 5%, we want to obtain a no-
arbitrage price c0 for the call option. The following table lists the payoff structure
of our simple financial market.

Time 0 Time 1
State 1 State 2

Money 1 1.05 1.05
Stock 100 84 112
Call c0 0 (112-98)=14

The idea of no-arbitrage pricing is to form a portfolio of Money and Stock,
h = (α, β)′, that replicates the payoff of the call option, and to deduce the option
price from the current price of the replication portfolio. Obviously, we solve the
following set of equations for α and β,

1.05α + 84β = 0

1.05α + 112β = 14

We obtain,
α = −40 β = 1/2.

This means that we borrow 40 from bank and buy a “half” stock. At time 0, this
portfolio has a value of

100 · 1
2
− 40 = 10.
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And this should be the price of the call option. If the price is 5, then we can form
the following portfolio

(α, β, c) = (45,−1/2, 1)

The current price of the portfolio is zero, but the payoff will be 5.25 next period
whichever state realizes. This is an arbitrage. If the price is 15, verify that the
following portfolio achieves an arbitrage

(α, β, c) = (−35, 1/2,−1).

Obviously, short sell must be allowed to make the above analysis valid. Borrowing
from banks can be considered as shorting the money.

1.3 State Prices

Consider Arrow-Debreu securities,

es = (

s−1︷ ︸︸ ︷
0, 0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸

S

)′

When and only when state s happens, we obtain one unit of payoff. In a complete
market, all Arrow-Debreu securities are available. Using Arrow-Debreu securities,
we can represent any asset payoff x by a portfolio:

x = (x1, · · · , xS)′ =
S∑

s=1

xses.

Let φs = q(es), and

φ = (φ1, φ2, · · · , φS)′

φ is called state price vector. The no-arbitrage price of x would be

q(x) =
S∑

s=1

xsq(es) =
S∑

s=1

xsφs = x′φ.

Theorem 1.3.1 There is no arbitrage iff there is a state price vector.

To prove this theorem, we need the Stiemke’s Lemma, which is a theorem of
alternatives.
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Lemma 1.3.2 (The Stiemke’s Lemma) For an m-by-n matrix A, one and only
one of the following statements is true:

(a) There exists an x ∈ Rn and x > 0 such that Ax = 0.

(b) There exists a y ∈ Rm with y′A > 0.

Recall that an arbitrage-portfolio is one that satisfies X ′h ≥ 0 and p′h < 0.
This can be stated mathematically,

h′(−p,X) > 0.

According to the Stiemke’s Lemma, there is no such h iff there exists a vector φ ∈ RS

and φ > 0 such that

(−p,X)

(
1
φ

)
= 0.

Put differently, we have

p = Xφ.

The vector φ is the desired state price vector. To see this, let X be an S-by-S
identity matrix, which characterizes a market for S Arrow-Debreu securities. We
then have p = φ, which means that q(es) = φs for all s.

Example (continued)

In the previous example (the market with a money account and a stock), the payoff
matrix and the price vector are as follows,

X =

[
1.05 1.05
84 112

]
, p =

[
1
100

]
.

The state price φ can be determined by solving

Xφ = p,

which yields

φ =

[
0.2381
0.7143

]
.

Using the state price vector, we can price the European call option:

c0 = 0.2381× 0 + 0.7143× 14 ≈ 10.

7



1.4 Risk-Neutral Probability

Let

φ0 =
S∑

s=1

φs =
S∑

s=1

q(es) = q(I),

where I is the vector of 1’s. φ0 is the price of risk-free zero-coupon bond, and

Rf =
1

φ0

is then the yield.

The price of x can be written as

p = q(x) =
S∑

s=1

φsxs = φ0

S∑
s=1

φs

φ0

xs.

Let

π̃s =
φs

φ0
,

Obviously,

π̃s > 0∀s and
S∑

s=1

π̃s = 1.

(π̃s) is called “Risk-Neutral Probability”. Using this probability,

p = φ0

S∑
s=1

π̃sxs = R−1
f Ẽx,

where the expectation Ẽ is taken with respect to risk-neutral probability.

Following the example in Section 6, let the risk-neutral probability of state 1
be p̃, then the stock price should satisfy

100 =
1

1.05
(84p̃+ 112(1− p̃)).

So p̃ = 1/4. So the price of call option is

c0 =
1

1.05
(0 · p̃+ 14 · (1− p̃)) =

1

1.05
· 14 · 3

4
= 10.
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1.5 Stochastic Discount Factor

Suppose the objective probability of state s is πs,

p = R−1
f

S∑
s=1

πs π̃
s

πs
xs.

Let ms = R−1
f

π̃s

πs , m
s > 0,

p =
S∑

s=1

πs(msxs)

= E(mx). (1.1)

m is called “Stochastic Discount Factor”. It is also called “change of measure” for
obvious reasons.

The equation (1.1) is called the “Central Asset Pricing Formula” (Cochrane,
2005). It holds in more general settings than is spelled so far in this course. In fact,
it exists for continuous-valued payoff.

1.5.1 Continuous-State World

Now, we use continuous-state random variables to describe future payoffs. Recall
that a continuous-state random variable is defined as a mapping from the sample
space to the real line,

x ≡ x(ω) : Ω→ R.

In this case, m would also be a R-valued random variable.

We define M = {x ∈ R : Ex2 < ∞}. This set contains all “reasonable”
payoffs. And we define inner product onM as,

⟨x1, x2⟩ = E(x1x2).

It is well known thatM is a Hilbert space with the above inner product. If there
is no arbitrage, then q is a linear positive functional on M. According to Riesz’s
Representation Theorem, every bounded linear pricing functional q on M can be
represented in terms of the inner product,

q(x) = ⟨x,m⟩ = E(mx)

for some m ∈M. Since q must be positive to rule out arbitrage, m > 0 a.s. (almost
sure). The reverse is also true. Hence we may conclude that there is no arbitrage
iff m > 0 a.s. For more details, see Hansen & Richard (1987).
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1.5.2 Some Ramifications

Gross Return

Let R = x/p, we have

1 = EmR.

Risk-Free Rate

If x = I, p = Em, So

Rf =
1

Em
.

Risk Premium

Covariance decomposition.

p = E(mx) = cov(m,x) + (Em)(Ex).

So

Ex
p

=
1

Em
− cov(m,R)

Em
= Rf −Rfcov(m,R)

So

ER−Rf = −Rfcov(m,R).

Risk premium is proportional to cov(m,R).

Sometimes we may decompose x into

x = xm + ε,

where xm = proj(x|m) is the systematic component of x and ε = x − proj(x|m) is
called the idiosyncratic component. It is easy to see that in this case

ER−Rf = −Rfcov(m,Rm),

where Rm = xm/p. In other words, idiosyncratic risk is not priced.
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β-Pricing

For asset i, the gross return can be written as

ERi = Rf +

(
cov(Ri,m)

var(m)

)(
−var(m)

Em

)
Or,

ERi = Rf + βi,mλm

βi,m measures the systematic risk contained in asset i.

λm “price of risk”.

Factor Models

When

m = a+ b′f, (1.2)

where f is a vector of “factors”, b factor loadings, and a a constant, we call it “factor
models”. Without loss of generality, we assume Ef = 0, so Em = a = 1/Rf .

Since 1 = E(mRi), we have

E(Ri) =
1

Em
− cov(m,Ri)

Em
=

1

a
− E(Rif

′)b

a
.

Let βi be the regression coefficient of Ri on f , thus, βi ≡ E(ff ′)−1E(fRi). So

E(Ri) =
1

a
− E(Rif

′)E(ff ′)−1E(ff ′)b

a
=

1

a
− β′E(ff ′)b

a
.

Note that E(ff ′)b = Emf . If we define

λ ≡ −RfE(mf),

we have

ERi = Rf + λ′βi. (1.3)

This generalizes the β-pricing model.

Reversely, we can also obtain (1.2) from (1.3). Hence factor models are equiva-
lent to beta pricing models. The factor models includes CAPM and APT as special
cases.
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Mean-Variance Frontier

We have

1 = E(mRi) = EmERi + cov(m,Ri)

= EmERi + ρm,Ri
σ(m)σ(Ri)

So

ERi =
1

Em
− 1

Em
ρm,Ri

σ(m)σ(Ri)

= Rf − ρm,Ri

σ(m)

Em
σ(Ri).

Then, since |ρ| ≤ 1,

|ERi −Rf | ≤
σ(m)

Em
σ(Ri).

Notice
ERi−Rf

σ(Ri)
is the Sharpe ratio, and

ERi −Rf

σ(Ri)
≤ Rfσ(m).

Rational Bubble and Discounted Cash Flow Valuation

Consider a stock with price process pt and dividend process dt. Using the formula
pt = Etmt+1xt+1, we have

pt = Et[mt+1(pt+1 + dt+1)]

= Et[mt+1(Et+1[mt+2(pt+2 + dt+2)] + dt+1)]
...

= Et

(
n∏

j=1

mt+j

)
pt+n +

n∑
i=1

Et

(
i∏

j=1

mt+j

)
dt+i

= Et

(
∞∏
j=1

mt+j

)
p∞ +

∞∑
i=1

Et

(
i∏

j=1

mt+j

)
dt+i

The second term on the last line is the DCF value of the stock. If we assume
(dt+i, i ≥ 1) are known at time t, and mt = 1/(1 + r) with r > 0, then the second
term reduces to

∑∞
i=1

1
(1+r)i

dt+i.
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The first term is called the rational bubble. For it to exist as n → ∞, pt+n

must also go to infinity.

1.6 Consumption-based Asset Pricing

We have shown that a discount factor m exists (and positive) under LOP (and
no-arbitrage) condition. Now we give this discount factor economic meaning.

Consider a representative agent with a utility function u. He lives for two
periods, t and t+1. In period t, he makes investment/consumption decision, trying
to maximize his expected life-time utility:

max
ξ

u(ct) + βEtu(ct+1)

subject to

ct = yt − ptξ

ct+1 = yt+1 + xt+1ξ

– Et is conditional expectation on the information available on time t.

– β is called “subjective discount factor”, or “impatience factor”

– Implicitly assumes separability of utility

– (yt): endowment (labor income or/and bequeathment)

– ξ: amount of asset.

The first order condition gives,

ptu
′(ct) = Et [βu

′(ct+1)xt+1] (1.4)

The left hand side is the marginal loss of utility of holding asset. And the right
hand side is the marginal increase of expected utility of holding asset. Rearrange
(1.4), we have

pt = Et

[
β
u′(ct+1)

u′(ct)
xt+1

]
= Etmt+1xt+1, (1.5)

where

mt+1 = β
u′(ct+1)

u′(ct)
. (1.6)
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In light of (1.6), m is often called “marginal rate of substitution”, the rate at which
the investor is willing to substitute consumption at time t + 1 for consumption at
time t.

For example, if the representative agent has power utility, u(c) = 1
1−γ

c1−γ,
then

mt+1 = β

(
ct+1

ct

)−γ

.

In particular, when γ → 1, u(c) = log c, then mt+1 would inversely proportional to
ct+1/ct,

mt+1 = β

(
ct+1

ct

)−1

If for some reason ct+1 is expected to be tiny (e.g., expect a disaster to happen), the
price for asset would be huge.

For another example, if the utility function is quadratic, u(c) = u0−γ(c∗− c)2

with γ > 0, c∗ > c and u0 = γc2∗, then

mt+1 = β
c∗ − ct+1

c∗ − ct
.

1.6.1 CAPM

The Capital Asset Pricing Model (CAPM) model is most frequently stated as:

ERi = Rf + βi,RW
(ERW −Rf ), (1.7)

where RW denotes the return on the “wealth portfolio”. We usually proxy RW by
the return on a stock market index such as S&P 500.

The CAPM model is equivalent to

m = a+ bRW . (1.8)

The CAPM model can be understood as a consumption-based asset pricing
model. To see this, assume quadratic utility, u(c) = −1

2
c2∗ − 1

2
(c∗ − c)2. Thus

mt+1 = β
c∗ − ct+1

c∗ − ct
.

And suppose there is no endowment in the second period., yt+1 = 0. (We may think
of yt as bequeathed wealth instead of labor income.) Then we have

ct+1 = RW (yt − ct).
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Hence

mt+1 = β
c∗ −RW (yt − ct)

c∗ − ct
=

βc∗
c∗ − ct

− β(yt − ct)

c∗ − ct
RW .

This is exactly (1.8). We may, of course, derive (1.8) under other assumptions. See
Section 9.1 in Cochrane (2005).

1.6.2 Arbitrage Pricing Theory

The Arbitrage Pricing Theory (APT) is a linear factor model. It is assumed that
we may characterize the asset payoff by a factor structure:

Ri = ERi + β′
if̃ + εi, (1.9)

where f̃ a K-by-1 vector of demeaned factors, Eεi = 0, Efεi = 0, and Eεiεj = 0
for i ̸= j. The price errors (εi) represent idiosyncratic risks that can be diversified
away and hence not priced. If we assume σ(m) <∞ and LOP holds, we have

q(Ri) = ERiq(I) + β′
iq(f̃).

Since q(Ri) = 1, q(I) = 1/Rf , we solve the above equation for ERi:

ERi = Rf + β′
iλ,

where λ = −Rfq(f̃). Recall that the β-pricing model above is equivalent to linear
factor model.

Note that the above derivation starts from statistics and factors are selected
to best predict asset payoffs. The general linear factor model can also start from
economic intuition. Recall that the stochastic discount factor mt+1 is a nonlinear
function of consumption ct+1. Suppose we find factors zt that forecast future con-
sumption, say, ct+1 = g(zt). Then mt+1 = βu′(g(zt+1))/u

′(g(zt)), which we can
linearize to obtain some forms of linear factor models.

1.7 Summary

In this first part of the course, we introduce fundamental concepts and laws of asset
pricing. In particular, we show that if the law of one price (LOP) holds, there exists
a stochastic discount factor (SDF). If there is no arbitrage, this SDF is strictly
positive. Furthermore, if the market is complete, the SDF is unique. We show that
the SDF framework incorporates many theories of classical finance. And we show
that the SDF has a natural economic interpretation derived from consumer decision.
From this we further connect SDF framework to CAPM and APT.
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Chapter 2

Mathematical Background for
Continuous-time Finance

2.1 Probability Background

2.1.1 Random Variable

A random variable X is defined as a mapping from sample space Ω to R with a prob-
ability measure P defined on an σ-field of Ω, F1. (Ω,F ,P) is called a “probability
triple”, or “probability measure space”.

A σ-field (or σ-algebra) of Ω is a collection of subsets of Ω containing Ω itself
and the empty set ϕ, and closed under complements, countable unions. In math-
ematical language, a random variable is a F -measurable function X from Ω to R.
Being F -measurable means,

{ω ∈ Ω|X(ω) ≤ x} ∈ F , x ∈ R.

Or, X−1(B) ∈ F for every Borel set B ∈ B(R). B(R) is the smallest σ-field con-
taining all open sets of R.

In intuitive terms, the σ-field F is a collection of all events. To see this,
consider throwing dimes for three times, the sample space Ω is

{HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.
1We may generalize the definition of random variable. So far what we have defined is “real-

valued” random variable. We can also define “vector-valued” random variable, when X : Ω→ Rd.
Or even “function-valued” random variable, when X : Ω→ H, where H is an appropriate function
space.
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One example of σ-fields on Ω is F = 2Ω, the power set of Ω that contains all subsets
of Ω including ∅ and Ω. One element of F is

{HHH,HHT,HTH,HTT}.

This is an event that may be called “Head appear in the first throw”. For another
example, the event {HTH,HTT} may be called “First Head, second Tail”. So X
being F -measurable means that X−1(B) is indeed an event. So it makes sense to
talk about P(X ∈ B).

2.1.2 Stochastic Process

A stochastic process is a collection of random variables. We denote a stochastic
process by X = (Xt), t ∈ T , where T is an index set. The index set T can be a
discrete set such as {1, 2, ...}, or a continuous set, say [0, 1].

More rigorously, X is a mapping from the product space of Ω × T to R. So
we may write Xt = Xt(ω) = X(ω, t). X(t, ·) is a random variable, and X(·, ω) is a
sample path. We say that X is measurable if for all A ∈ B(R),

{(t, ω)|Xt(ω) ∈ A} ∈ B([0, 1])⊗F ,

where ⊗ denotes product of sigma fields.

Continuous-time process is stochastic process with a continuous index set T ,
e.g., [0, 1]. Continuous process refers to X that takes value in continuous subsets of
R, rather than discrete subsets such as N.

2.1.3 Filtration

A filtration is a non-decreasing indexed sequence of σ-fields (Ft). (Fs) ⊂ (Ft) if
s < t. As previously argued, a σ-field is a collection of events. The more inclusive
a σ-field is, the more we may possibly know about the state of the nature Ω. So we
can roughly think of σ-fields as information sets. A filtration is thus an ever-finer
sequence of info sets.

The natural (or standard) filtration of X = (Xt) is defined by Ft = σ((Xs)s≤t),
that is, the σ-filed generated by ((Xs)s≤t), or intuitively speaking, the information
contained in the stochastic process up to time t. Recall that σ-field generated by a
random variable X, σ(X), is defined as

σ(X) = {X−1(B)|B ∈ B(R)},
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where B(R) denotes the Borel σ-field of R. Roughly speaking, σ(X) is the set of all
information we may know through observation of X.

A stochastic process X = (Xt) is said to be adapted to a filtration (Ft) if, for
every t ≥ 0, Xt is a Ft-measurable random variable.

2.1.4 Brownian Motion

A one-dimensional Brownian motion is defined as a R-valued process W = (Wt)
such that

• Continuous sample path a.s.

• Independent Gaussian increment,Wt−Ws independent of Fs andWt−Ws|Fs ∼
N(0, t− s) for t ≥ s.

• W0 = 0 a.s.

Results

(1) Wt ∼ N(0, t)

(2) (Wt1 ,Wt2 , ...,Wtn)
′ ∼ Multivariate normal. To see this,(

Ws

Wt

)
=

(
1 0
1 1

)(
Ws

Wt −Ws

)
.

(3) Wt|Ws = x ∼ N(x, t− s).

Properties

(a) Time-homogeneity
Vt = Wt+s −Ws for any fixed s is a BM ind of Fs.

(b) Symmetry
Vt = −Wt is a BM.
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(c) Scaling
Vt = cWt/c2 is a BM

(d) Time inversion
V0 = 0, Vt = tW1/t, t > 0 is a BM.

(e) Sample path: continuous, but no where differentiable. In fact, it is Höolder
continuous:

Wt −Ws ≤ k|t− s|1/2−δ,∀δ > 0.

(f) Vt = W 2
t is self-similar (of order 1):

(Vct, t ≥ 0) =d (cVt, t ≥ 0).

2.1.5 Martingales

(Mt,Ft) ∼ a martingale if M is adapted to F (or, Mt is Ft-measurable) and

E(Mt|Fs) = Ms for s < t.

When E(Mt|Fs) ≥Ms, we call Mt a sub-martingale. When E(Mt|Fs) ≤Ms, we call
it a sup-martingale.

Remarks:

(1) BM is a martingale. “prototype” martingale

(2) W 2
t − t is a martingale.

Proof: use the “incrementalize” method.

(3) exp(λWt − λ2t/2) is a positive martingale.

(4) For any r.v. X, let ξt = E(X|Ft), then ξ = (ξt) is a martingale wrt F .

(5) |Mt|p is a submartingale if p ≥ 1 and E|Mt|p <∞.
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2.1.6 Markov Processes

(Xt,Ft) ∼ a Markov process if the distribution of Xt conditional on Fs is identical
to the distribution of Xt conditional on σ(Xs) for all s < t.

The likelihood of the discrete samples of a Markov process has a nice iterative
representation. Choose t1, t2, ..., tn arbitrarily. The likelihood of (Xt1 , Xt1 , ..., Xtn),
in general, is given by

f(Xt1 , Xt1 , ..., Xtn) = f(Xt1) · f(Xt2 |Xt1) · f(Xt3 |Xt1 , Xt2) · · · f(Xtn |Xt1 , ..., Xtn−1).

For Markov processes, we have

f(Xt1 , Xt1 , ..., Xtn) = f(Xt1) · f(Xt2 |Xt1) · f(Xt3|Xt2) · · · f(Xtn |Xtn−1).

So to determine the distribution of a continuous Markov process, we just need to
determine the distribution of Xt|Xs = x for any t and s.

Definition 2.1.1 (Transition Probability) The transition probability of a Markov
process (Xt) is given by

Ps,t(x,A) = P{Xt ∈ A|Xs = x}.

Transition probability completely determines distribution of continuous process.

Definition 2.1.2 (Homogenous Markov process) If the transition probability
of a Markov process (Xt) satisfies

Pt(x,A) = P{Xt ∈ A|X0 = x} = P{Xs+t ∈ A|Xs = x},

we call it a homogenous Markov process.

A different notation. Pt(x,A) describes a distribution by assigning probability
values to subsets A. We can also describe distribution by its generalized moments
Ef(Z), where Z = Xt|Xs = x in our case. If we know Ef(Z) for enough number of
f , then we know the distribution of Z. In fact, we can choose f to be

f(·) = I{· ∈ A}.

Then
Ef(Z) = EI{Z ∈ A} = P{Z ∈ A}.

21



In Markov literature, the following notation is often used,

Ptf(x) ≡ Pt(x, f) = E(f(Xt)|X0 = x).

Pt may be regarded as a functional operator:

Pt : f 7−→ Ptf.

Transition density may be defined with respect to transition probability,

Pt(x,A) =

∫
A

pt(x, y)dy.

Since Ptf(x) is a conditional expectation, we have

Ptf(x) =

∫ ∞

−∞
f(y)pt(x, y)dy.

Example: Let X be a Brownian Motion. We have Xt+s|Xs = x ∼ N(x, t). Hence
the transition density,

pt(x, y) =
1

2π
√
t
exp(−(y − x)2

2(t)
).

2.2 Ito Calculus

2.2.1 Stochastic Integral

In this section we study the following integral:∫ t

0

KsdMs,

where (Mt,Ft) is a continuous martingale and K is adapted to F .
First we study the ordinary Lebesgue-Stieltjes integral:∫ t

0

f(s)dg(s).

For any partition 0 = t0 < t1 < t2 < · · · < tn = t, define

S =
∑
i

f(si)[g(ti)− g(ti−1)],
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where ti−1 ≤ si ≤ ti. Let πt = maxi |ti − ti−1|. We say that the Lebesgue-Stieltjes
integral exists, if limπt→0 S exists for any si ∈ [ti−1, ti].

Suppose that f is continuous and g is of bounded variation, ie,∑
i

|g(ti)− g(ti−1)| <∞.

For example, if g is monotonely increasing, then it is of bounded variation. We look
at

S1 =
∑

f(si)[g(ti)− g(ti−1)]

S2 =
∑

f(ti−1)[g(ti)− g(ti−1)].

And find that

|S1 − S2| ≤
(
max

i
|f(si)− f(ti−1)|

)(∑
i

|g(ti)− g(ti−1)|

)
→ 0.

So the Lebesgue-Stieltjes integral exists.

However, it is well known that a martingale M is of bounded variation iff
M is constant. In other words,

∫ t

0
KsdMs cannot be defined “path-by-path” as a

Lebesgue-Stieltjes integral. Instead, we define∫ t

0

KsdMs = p lim
πt→0

∑
i

Kti−1
(Mti −Mti−1

). (2.1)

The choice of Kti−1
in (2.1) makes (2.1) an Ito integral. If we choose K(ti−1+ti)/2,

then we have Stratonovich integral. If K is bounded, measurable, and Ft-adapted,
then the Ito integral in (2.1) is always well defined.

2.2.2 Quadratic Variation

For a continuous martingale M , the quadratic variation of M , denoted by [M ], is
defined as

[M ]t = plimπt→0

n∑
i=1

(Mti −Mti−1
)2. (2.2)

It is clear that [M ]t is non-decreasing, thus of bounded variation. Thus it is inte-
grable in the Stieltjes sense.
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For any continuous process X, the first-order variation on [0, t] is captured
by
∑
|Xti −Xti−1

|, and
∑
|Xti −Xti−1

|2 captures the second order. Intuitively, for
locally smooth stochastic processes, the first-order variation dominates. For locally
volatile processes, the first-order variation explodes, but the second-order variation
may be well defined.

Example: For a Brownian motion W , we have [W ]t = t. To show this, partition
[0, t] into n intervals of equal length ∆ = t/n. we have by the law of large number,

n
1

n

∑
i

(Wi∆ −W(i−1)∆)
2 →p nE(Wi∆ −W(i−1)∆)

2 = n∆ = t.

Quadratic Covariation

Given two continuous martingales, M and N , their quadratic covariation is defined
by

[M,N ]t = plimπt→0

n∑
i=1

(Mti −Mti−1
)(Nti −Nti−1

).

It is straightforward to show that

[X + Y ]t = [X]t + [Y ]t + 2[X,Y ]t.

It is also easy to show that, given a continuous martingale M and bounded-variation
process A, we have

[M,A]t = 0.

2.2.3 Semimartingale

If X can be written as Xt = At + Mt, where (Mt) is a continuous martingale and
(At) a continuous adapted process of finite variation, then X is called a continuous
semimartingale. A constitutes trend, while M determines local variation. A contin-
uous semimartingale X = A +M has a finite quadratic variation and [X]t = [M ]t.

It is clear that Ito integral with respect to semimartingale,
∫ t

0
KsdXs, is well defined.

We have ∫ t

0

KsdXs =

∫ t

0

KsdAs +

∫ t

0

KsdMs.

The second item is Ito integral, and the first item is essentially a Stieltjes integral.
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2.2.4 Properties of Ito Integral

Consider Pt =
∫ t

0
KsdMs = plim|πt|→0

∑
i Kti−1

(Mti −Mti−1
), where (Mt,Ft) ∼ is

continuous martingale, Kt is adapted, and
∫ t

0
K2

sds < ∞ for all t. Pt has the
following properties,

(a) Pt is a Martingale.

(b) [P ]t =
∫ t

0
K2

sd[M ]s.

(c) If Pt =
∫ t

0
KsdMs and Qt =

∫ t

0
HsdNs, then

[P,Q]t =

∫ t

0

KsHsd[M,N ]s.

To understand (a) intuitively, note that

Pti − Pti−1
≈ Kti−1

(Mti −Mti−1
)

is a martingale difference sequence. To understand (b), we write

[P ]t = plim
∑

(Pti − Pti−1
)2

= plim
∑

K2
ti−1

(Mti −Mti−1
)2

≈ plim
∑

K2
ti−1

([M ]ti − [M ]ti−1
).

Recall that [M ]ti = plim
∑i

k=1(Mti −Mti−1
)2.

Example: (a) If Mt =
∫ t

0
WsdWs, then [M ]t =

∫ t

0
W 2

s ds.

(b) If Mt =
∫ t

0
WsdWs, then [M,W ]t =

∫ t

0
Wsd[W,W ]s =

∫ t

0
Wsds.

2.2.5 Ito’s Formula

Lemma 2.2.1 (Integration by Parts) If X and Y are two continuous semimartin-
gales, then

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs + [X, Y ]t. (2.3)

In particular,

X2
t = X2

0 + 2

∫ t

0

XsdXs + [X]t.
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Proof It suffices to prove the second statement. We have

X2
ti
−X2

ti−1
= 2Xti−1

(Xti −Xti−1
) + (Xti −Xti−1

)2.

Taking sum and limit, we obtain the desired result. To prove the first statement,
note that XtYt = [(Xt + Yt)

2 −X2
t − Y 2

t ]/2.

In differential form, we may rewrite (2.3) as

d(XtYt) = XtdYt + YtdXt + d[X,Y ]t.

Recall that for ordinary functions f(t) and g(t), we have∫ b

a

f(t)dg(t) = f(t)g(t)|ba −
∫ b

a

g(t)df(t).

Rearranging terms, we have

f(b)g(b) = f(a)g(a) +

∫ b

a

f(t)dg(t) +

∫ b

a

g(t)df(t).

Now we introduce the celebrated Ito’s formula.

Theorem 2.2.2 (Ito’s Formula) Let X be a continuous semimartingale, and f ∈
C2(R), then f(X) is a continuous semimartingale and

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d[X]s. (2.4)

In differential form, we may write the Ito’s formula as

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d[X]t. (2.5)

Proof We prove by induction. Suppose dXn
t = nXn−1

t dXt +
n(n−1)

2
Xn−2

t d[X]t, we

prove dXn+1
t = (n+1)Xn

t dXt+
n(n+1)

2
Xn−1

t d[X]t. It is obviously true for n = 1. For
arbitrary n,

d(Xt ·Xn
t ) = Xn

t dXt +XtdX
n
t + d[X,Xn]t

= Xn
t dXt +Xt(nX

n−1
t dXt +

n(n− 1)

2
Xn−2

t d[X]t) + nXn−1
t d[X]t

= (n+ 1)Xn
t dXt +

n(n+ 1)

2
Xn−1

t d[X]t.

So (2.5) is valid for polynomial functions. We can infer it remains true for all f ∈ C2.
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Example Since dW 2
t = 2WtdWt + dt, W 2

1 =
∫ 1

0
WtdWt + 1, so we have∫ 1

0

WtdWt = (W 2
1 − 1)/2.

Next we introduce the multivariate Ito’s formula. Let X = (X1, ..., Xd) be a vec-
tor of continuous semimartingales and f ∈ C2(Rd,R); then f(X) is a continuous
semimartingale and

f(Xt) = f(X0) +
∑
i

∫ t

0

∂f

∂xi

(Xs)dX
i
s +

1

2

∑
i,j

∫ t

0

∂2f

∂xi∂xj

(Xs)d[X
i, Xj]s. (2.6)

In differential form, we have

df(Xt) =
∑
i

∂f

∂xi

(Xt)dX
i
t +

1

2

∑
i,j

∂2f

∂xi∂xj

(Xt)d[X
i, Xj]t. (2.7)

In particular, for the bivariate case,

df(Xt, Yt) = f1(Xt, Yt)dXt + f2(Xt, Yt)dYt

+
1

2
f11(Xt, Yt)d[X]t + f12(Xt, Yt)d[X, Y ]t +

1

2
f22(Xt, Yt)d[Y ]t

Furthermore, if A is of bounded variation, we have

df(Xt, At) = f1(Xt, At)dXt + f2(Xt, At)dAt +
1

2
f11(Xt, At)d[X]t.

In particular, if dXt = µtdt+ σtdWt, then

df(Xt, t) = f1(Xt, t)dXt + f2(Xt, t)dt+
1

2
f11(Xt, t)d[X]t

= (µtf1 + f2 +
1

2
σ2
t f11)dt+ σtf1dWt.

This special case often appears as “Ito’s formula”.

Example: Consider ξt = exp(λMt − λ2

2
[M ]t) ≡ f(Mt, [M ]t), where M is a contin-

uous martingale. ξt is called an exponential martingale. We have

f1 = λf

f2 = −λ2

2
f

f11 = λ2f,
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So

d exp(λMt −
λ2

2
[M ]t) = λ exp(λMt −

λ2

2
[M ]t)dMt,

or

exp(λMt −
λ2

2
[M ]t) = 1 + λ

∫ t

0

exp(λMs −
λ2

2
[M ]s)dMs.

Note that the exponential martingale is positive.

In general, if Mt is a martingale, f(Mt) is not necessarily a martingale, but it is
always a semimartingale. If Xt is semimartingale, the f(Xt) is still semimartingale.
So we say that the class of semimartingales is “invariant” under composition with
C2-functions.

2.3 Diffusions

2.3.1 Definition

A diffusion is a continuous-time semimartingale that is characterized by the following
stochastic differential equation,

dXt = µ(Xt)dt+ σ(Xt)dWt,

where µ(·) is called the drift function and σ(·) is called the diffusion function. E-
quivalently, we may represent Xt in integral form,

Xt = X0 +

∫ t

0

µ(Xs)ds+

∫ t

0

σ(Xs)dWs.

In physics, diffusions describe the movement of a particle suspended in moving liquid.

Let ∆ be a short time interval. On [t, t+∆], we have

Xt+∆ −Xt =

∫ t+∆

t

µ(Xs)ds+

∫ t+∆

t

σ(Xs)dWs.

It is clear that

lim
∆→0

1

∆
E(Xt+∆ −Xt|Xt = x) = µ(x).

So µ measures the rate of instantaneous changes in conditional mean. We also have,

lim
∆→0

1

∆
var(Xt+∆ −Xt|Xt = x) = σ2(x).
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So σ2 measures the rate of instantaneous changes in conditional volatility.

It is easy to see that if µ is bounded,∫ t+∆

t

µ(Xs)ds = O(∆),

and that if σ is bounded, ∫ t+∆

t

σ(Xs)dWs = O(∆1/2).

So if we look at small intervals, diffusions dominates. In fact, drift term is not
identifiable in small intervals. At long intervals, the drift part dominates, since∫ T

0

µ(Xs)ds = O(T ),

while ∫ T

0

σ(Xs)dWs = O(T 1/2).

Linear Drift

The linear (or affine) drift function is widely used in modeling processes with mean
reversion. Specifically, we may have

µ(x) = κ(u− x),

where κ and u are parameters. Since E(Xt+∆ −Xt) ≈ ∆κ(u−Xt). So when κ > 0,
the linear drift tend to be “mean reverting”, producing downward correction when
Xt > u. However, u may or may not be the mean of the process. When κ = 0, the
process is a martingale. When κ < 0, the process is unstable.

Constant-Elasticity Diffusion

Many diffusion processes are endowed with the following form of diffusion function,

σ(x) = c|x|ρ,

where c and ρ are constants. From

log σ2(x) = log c2 + 2ρ log |x|,

we have
d log σ(x)

d log |x|
= ρ.

This form of diffusion function is hence called constant-elasticity diffusion.
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2.3.2 Useful Diffusion Models

In this section we introduce a number of useful parametric diffusion models.

Brownian Motion with Drift

dXt = µdt+ σdWt

Xt = X0 + µt+ σWt

Transition distribution: Xt+∆|Xt = x ∼ N(x+ µ∆, σ2∆).

Geometric Brownian Motion

dXt = µXtdt+ σXtdWt

By Ito’s formula,

d logXt =
1

Xt

dXt −
1

2X2
t

d[X]t

Since d[X]t = σ2X2
t dt,

d logXt = (µ− 1

2
σ2)dt+ σdWt.

Ornstein-Uhlenbeck Process The Ornstein-Uhlenbeck process has the follow-
ing SDE representation,

dXt = κ(µ−Xt)dt+ σdWt.

To derive the transition distribution, we define Yt = Xt − µ. Then

dYt = −κYtdt+ σdWt.

d(exp(κt)Yt) = κ exp(κt)Ytdt+ exp(κt)dYt

= κ exp(κt)Ytdt+ exp(κt)(−κYtdt+ σdWt)

= σ exp(κt)dWt

So

exp(κt)Yt = Y0 + σ

∫ t

0

exp(κs)dWs,
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ie,

Yt = exp(−κt)Y0 + σ

∫ t

0

exp(−κ(t− s))dWs.

So

Xt = µ+ exp(−κt)(X0 − µ) + σ

∫ t

0

exp(−κ(t− s))dWs.

Given Y0 = y, what is the distribution of Yt?

Yt = exp(−κt)Y0 + σ

∫ t

0

exp(−κ(t− s))dWs

∼ N(exp(−κt)y, σ21− exp(−2κt)
2κ

).

Let t→∞,

Yt ∼ N(0,
σ2

2κ
).

So if Y0 ∼ N(0, σ
2

2κ
), Yt is stationary and Yt ∼ N(0, σ

2

2κ
).

Feller’s Squared-Root Process The Feller’s squared-root process has the fol-
lowing representation,

dXt = κ(µ−Xt)dt+ σ
√

XtdWt.

If 2κµ
σ2 ≥ 1, then Xt ∈ [0,∞). Like Ornstein-Uhlenbeck Process, Feller’s SR Process

is also a stationary process. And it’s transition distribution is non-central Chi-
square, and marginal distribution gamma. It is used by Cox, Ingersol, and Ross
(CIR) to model interest rates.

2.3.3 Discrete-Time Approximations

For many diffusions, the transition distributions are very complicated. Often they do
not have closed-form density functions. It is thus desirable to have approximations
of transition distributions. The approximation error shall go to zero as intervals of
discrete-time observations go to zero.

Euler Approximation

Suppose that we observe a discrete-time sequence, X∆, X2∆, ..., Xn∆. The interval
between observations is ∆. We seek an approximation of the conditional distribution
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of Xn∆|X(n−1)∆. Let ∆ be small. We have

Xi∆ −X(i−1)∆ =

∫ i∆

(i−1)∆

µ(Xt)dt+

∫ i∆

(i−1)∆

σ(Xt)dWt

= ∆µ(X(i−1)∆) + σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

+

∫ i∆

(i−1)∆

[µ(Xt)− µ(X(i−1)∆)]dt+

∫ i∆

(i−1)∆

[σ(Xt)− σ(X(i−1)∆)]dWt

≈ ∆µ(X(i−1)∆) + σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

This is called Euler Approximation. Under this approximation, Xi∆|X(i−1)∆ = x ∼
N(∆µ(x),∆σ2(x)).

Milstein Approximation

We have something better. Consider

µ(Xt)− µ(X(i−1)∆)

=

∫ t

(i−1)∆

µ′(Xs)dXs +
1

2

∫ t

(i−1)∆

µ′′(Xs)d[X]s

=

∫ t

(i−1)∆

(µ′(Xs)µ(Xs) +
1

2
µ′′(Xs)σ

2(Xs))ds+

∫ t

(i−1)∆

µ′(Xs)σ(Xs)dWs,

and

σ(Xt)− σ(X(i−1)∆)

=

∫ t

(i−1)∆

σ′(Xs)dXs +
1

2

∫ t

(i−1)∆

σ′′(Xs)d[X]s

=

∫ t

(i−1)∆

(σ′(Xs)µ(Xs) +
1

2
σ′′(Xs)σ

2(Xs))ds+

∫ t

(i−1)∆

σ′(Xs)σ(Xs)dWs.

And ∫ i∆

(i−1)∆

∫ t

(i−1)∆

(µµ′ +
σ2µ′′

2
) = O(∆2)∫ i∆

(i−1)∆

∫ t

(i−1)∆

(σµ′)dWsdt = O(∆3/2)∫ i∆

(i−1)∆

∫ t

(i−1)∆

(σσ′)(Xs)dWsdWt = O(∆) (∗)
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So if we want to have an accuracy of O(∆), the last term cannot be ignored. To
have a better approximation,

(∗) = σσ′(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

dWsdWt

+

∫ i∆

(i−1)∆

∫ t

(i−1)∆

[(σσ′)(Xs)− (σσ′)(X(i−1)∆)]dWsdWt

= σσ′(X(i−1)∆)

∫ i∆

(i−1)∆

(Wt −W(i−1)∆)dWt + o(∆)

=
1

2
[(Wi∆ −W(i−1)∆)

2 −∆]σσ′(X(i−1)∆) + o(∆).

The last equality is obtained by applying Ito’s formula,

d(
1

2
(Wt −W(i−1)∆)

2) = (Wt −W(i−1)∆)dWt +
1

2
dt.

So here’s Milstein Approximation,

Xi∆ −X(i−1)∆ = ∆µ(X(i−1)∆) + σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

+
1

2
[(Wi∆ −W(i−1)∆)

2 −∆]σσ′(X(i−1)∆) + o(∆).
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Chapter 3

Arbitrage Pricing in Continuous
Time

3.1 Basic Setup

Consider a financial market with an interest-paying money account and a stock.

Money Account The interest rate may be fixed, time-varying, or even state-
contingent. Let M0 be the initial deposit and Mt be the cash value of the account
at time t. We may represent Mt in stochastic differential equation form as follows,

• r fixed
dMt = rM0e

rtdt = rMtdt, Mt = M0e
rt.

• r time-varying, rt

dMt = rtMtdt, Mt = M0e
∫ t
0 rsds.

• r state-contingent, r(Xt)

dMt = r(Xt)Mtdt, Mt = M0e
∫ t
0 r(Xs)ds.

Stock Let St be stock price at time t that follows an Ito process,

dSt = µ(St)dt+ σ(St)dWt.

The use of continuous diffusion process implicitly asserts that there is no “surprise”
in the market.
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One special case is when µ(St) = 0 and σ(St) = 1. St then becomes a Brownian
motion. Louis Bachelier, the pioneer of mathematical finance, used Brownian motion
in describing the fluctuation in financial markets. Another well-known special case
is the geometric Brownian motion, which is used by Black and Scholes (1973) to
price European options.

If we assume St > 0 a.s., we may also represent St in the geometric form,

dSt = µ(St)Stdt+ σ(St)StdWt.

Note that, throughout the text, we use homogeneous diffusions to model stock
prices. More generally, at the cost of technical complication, we may also use het-
erogenous diffusions.

Multivariate Case St can be a N × 1 price vector describing the prices of N
securities. Accordingly, W may be a d×1 vector of independent Brownian motions,
each of which represents a source of new information or innovation. In such case,
µ ∈ RN , σ ∈ RN×d.

Portfolio/trading strategy Portfolio or trading strategy (ht) is an adapted vec-
tor process:

ht =

(
at
bt

)
,

where at is the holding of money account, and bt the holding of stocks.

Trading Gain

Gt =

∫ t

0

bsdSs.

We usually impose the following integrability condition:∫ t

0

b2sds <∞a.s. ∀t

If St is a martingale (e.g., BM), then we know Gt is also a martingale.

Gt =
∫ t

0
bsdSs is often called “gains process”. To see this, imagine an investor

who makes decisions in discrete time: 0 = t0 < t1 < · · · < tn = T . Let bti be the
number of stocks the investor holds over the period [ti, ti+1). Then the gains process
is described by the following stochastic difference equation:

G0 = 0, G(ti+1)−G(ti) = bti(S(ti+1)− S(ti)).
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Or in summation form,

G(ti+1) = G(0) +
i∑

j=0

btj(S(tj+1)− S(tj)).

Note that as in the definition of Ito integral, bti must be Fti-measurable, mean-
ing that the investor cannot anticipate the future (exclusion of inside trading).

Let Xt = (Mt, St)
′, and let Ht be the value of the portfolio (ht). Then

Ht = ht ·Xt = atMt + bt · St.

Definition 3.1.1 (Self-financing) (ht) is self-financing iff

dHt = ht · dXt = atdMt + bt · dSt.

Definition 3.1.2 (Arbitrage) Let (ht) be a self-financing portfolio and (Ht) be its
value, an arbitrage portfolio is one such that

H0 = 0, and HT > 0 a.s.

Lemma 3.1.3 If there is no arbitrage opportunities, and if (ht) is self-financing
and dHt = vtHtdt, then vt = rt, the risk-free short rate.

In other words, there is only one risk-free short rate.

Numeraire A numeraire is a strictly positive Ito process used for the “units” of
pricing. If there is a riskfree rate rt, the typical numeraire is the reciprocal of the
price of riskfree zero-coupon bond, Yt = M−1

t = exp(−
∫ t

0
rsds). We denote the

numeraire-deflated price process of Xt by Yt as XY , XY
t = XtYt. For example, if

Xt = (Mt, St)
′ and Yt = M−1

t , then XY
t = (1, St/Mt).

Theorem 3.1.4 (Numeraire Invariance Theorem) Suppose Y is a numeraire.
Then a trading strategy (ht) is self-financing w.r.t. X iff (ht) is self-financing w.r.t.
XY .
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Proof Let Ht = ht ·Xt, and HY
t = HtYt. If dHt = ht · dXt, then

dHY
t = YtdHt +HtdYt + d[H,Y ]t

= Ytht · dXt + (ht ·Xt)dYt + ht · d[X, Y ]t

= ht · (YtdXt +XtdYt + d[X, Y ]t)

= ht · dXY
t .

So (ht) is self-financing w.r.t. XY . The reverse is also true.

It follows that h is an arbitrage w.r.t. X iff it is an arbitrage w.r.t. XY . All this
says that renormalization of security prices by a numeraire does not have economic
effects.

3.2 The Black-Scholes Model

In a market of (Mt, St) we price an European call option using no-arbitrage argu-
ment. We specify {

dMt = rMtdt
dSt = µStdt+ σStdWt

Recall that CT = max(ST − K, 0). In general, we may use the same argument to
price any European option with the final payoff g(ST ), where g is a known function.

Let Ct = F (St, t). We assume F ∈ C2,1(R × [0, T )), ie, F1, F2, and F11 exist
and are continuous. We have

dCt = F2(St, t)dt+ F1(St, t)dSt +
1

2
F11(St, t)d[S]t

= (F2(St, t) + µStF1(St, t) +
1

2
F11(St, t)σ

2S2
t )dt+ σStF1(St, t)dWt

The pricing strategy is to replicate Ct using a self-financing portfolio of Mt

and St. The price of the replication portfolio must then be the price of the option,
if no arbitrage is allowed.

We have Ht = atMt + btSt. Since ht is self-financing,

dHt = atdMt + btdSt

= atrMtdt+ bt(µStdt+ σStdWt)

= (atrMt + btµSt)dt+ σbtStdWt
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By the unique decomposition property of diffusion processes, since Ct = Ht

a.s. for all t, we have

bt = F1(St, t)

at =
F (St, t)− F1(St, t)St

Mt

,

and by the equality of drift terms between Ct and Ht,

F2(St, t) + rStF1(St, t) +
1

2
σ2S2

t F11(St, t)− rF (St, t) = 0. (3.1)

For (3.1) to hold, F must be the solution to the following partial differential equation
(PDE):

F2(x, t) + rxF1(x, t) +
1

2
σ2x2F11(x, t)− rF (x, t) = 0 (3.2)

with the boundary condition

F (x, T ) = max(x−K, 0). (3.3)

We can check that the Black-Scholes Option Pricing Formula solves the PDE
(3.2) and (3.3). The formula is as follows,

F (x, t) = xΦ(z)− exp(−r(T − t))KΦ(z − σ
√
T − t), (3.4)

with

z =
log(x/K) + (r + σ2/2)(T − t)

σ
√
T − t

, (3.5)

where Φ is the cdf of standard normal distribution.

A byproduct of this derivation is a popular dynamic hedging strategy called
“delta hedging”. Consider a bank that has sold an European call option and now
it wants to hedge its position. All it has to do is to maintain opposite positions of
ht = (at, bt). In fact bt = F1(St, t) is called the “delta” of the option in practice.

The General Case

Now assume that (Mt, St) are such that

dMt = rtMtdt

dSt = µ(St)dt+ σ(St)dWt
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We may mimic the argument in previous section and show that under the
no-arbitrage condition, the price process for an European call option F (St, t) must
satisfy:

F2(x, t) + rtxF1(x, t) +
1

2
σ(x)2F11(x, t)− rtF (x, t) = 0 (3.6)

with the boundary condition

F (x, T ) = max(x−K, 0).

Note that for general European option with payoff g(ST ), the price process
still satisfy (3.6) with following boundary condition

F (x, T ) = g(x). (3.7)

3.3 The Feynman-Kac Solution

Constant Riskfree Rate

Consider the following boundary value problem:

F2(x, t) + rxF1(x, t) +
1

2
σ2(x)F11(x, t)− rF (x, t) = 0, (3.8)

with
F (x, T ) = g(x).

This problem differs from (3.6) only in the form of r, which is a constant here.

Construct an Ito process Z such that Zt = x

dZs = rZsds+ σ(Zs)dWs, s > t.

By Ito’s formula,

d(e−rsF (Zs, s))

= [−re−rsF (Zs, s) + e−rsF2(Zs, s)]ds+ e−rsF1(Zs, s)dZs +
1

2
F11(Zs, s)d[Z]s

= e−rs[−rF + F2 + rZsF1 +
1

2
σ2(Zs)F11]ds+ e−rsσ(Zs)F1(Zs, s)dWs

If F (x, t) satisfies (3.8), then the term in bracket is zero. Hence e−rsF (Zs, s)
is martingale. So

e−rTF (ZT , T ) = e−rtF (Zt, t) +

∫ T

t

e−rsσ(Zs)F1(Zs, s)dWs.
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Taking conditional expectation given Zt = x gives:

E(e−rTF (ZT , T )|Zt = x) ≡ E(e−rTg(ZT )|Zt = x) = e−rtF (x, t).

Hence

F (x, t) = E(e−r(T−t)g(ZT )|Zt = x).

The message is that we can solve certain PDE’s by calculating a conditional
expectation of an imagined random variable g(ZT ).

Stochastic Riskfree Rate

Now we work to solve (3.6) which is reproduced below,

F2(x, t) + rtxF1(x, t) +
1

2
σ(x)2F11(x, t)− r(x)F (x, t) = 0

with

F (x, T ) = g(x).

It can be shown that if we construct Z such that Zt = x and

dZs = rsZsds+ σ(Zs)dWs, s > t, (3.9)

then

F (x, t) = E
{
exp

[
−
∫ T

t

rsds

]
g(ZT )|Zt = x

}
. (3.10)

In particular, the Black-Scholes option price is given by

F (x, t) = E
{
e−r(T−t)g(ZT )|Zt = x

}
, (3.11)

where Z is such that Zt = x and

dZs = rZsds+ σZsdWs, s > t. (3.12)

The expectation in the Feynman-Kac solution (3.10) is taken with respect
to objective probability on an imagined r.v. g(ZT ). We can also represent the
solution as an expectation taken with respect to an imagined probability (risk-
neutral probability) on a “real” r.v., for example, g(ST ). This will be explored in
the next section.
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Calculation of Black-Scholes Formula

Now we derive Black-Scholes formula from (3.11) and (3.12). We have

d logZs = (r − σ2/2)dt+ σdWt,

which implies

logZT − logZt = (r − σ2/2)(T − t) + σ(WT −Wt).

This is,

ZT = Zte
(r−σ2/2)(T−t)+σ(WT−Wt).

Hence

ZT |Zt=x =d xe(r−σ2/2)(T−t)+σ
√
T−tZ , Z ∼ N(0, 1).

So

F (x, t) = E
{
e−r(T−t)g(ZT )|Zt

}
= e−r(T−t)

∫ ∞

−∞
max(xe(r−σ2/2)(T−t)+σ

√
T−tz −K, 0)ϕ(z)dz

Some calculations yield the Black-Scholes formula in (3.4).

Feynman-Kac in Multivariate Case

Now we consider the market of a money account and multiple stocks containing d
dimensions of risk. We have

dMt = rtMtdt

dSt = µ(St)dt+ σ(St)dWt,

where Wt ∈ Rd, St ∈ RN , µ : RN × [0,∞)→ RN , σ : RN × [0,∞)→ RN×d.

The option price F (x, t) : RN × [0,∞) → R solves the following boundary
value pde:

F1(x, t)rtx+ F2(x, t) +
1

2
tr [(σσ′)(x)F11(x, t)]− rtF (x, t) = 0 (3.13)

with F (x, T ) = g(x). The solution of (3.13) is of the same form as (3.10).
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3.4 Risk-Neutral Pricing

We have shown that in the market of Mt and St such that

dMt = rtMtdt

dSt = µ(St)dt+ σ(St)dWt

The price of a general derivative can be represented as

F (x, t) = E
{
exp

[
−
∫ T

t

rsds

]
g(ZT )|Zt = x

}
,

where Z is an imagined Ito process such that Zs = x for s ≤ t and

dZs = rsZsds+ σ(Zs)dWs, s > t.

In this section we show that there exists a probability measure P̃ and a P̃-BM
W̃ such that

dSt = rtStdt+ σ(St)dW̃t.

So the price function of a general European option (CT = g(ST )) can be written as

F (x, t) = Ẽ
{
exp

[
−
∫ T

t

rsds

]
g(ST )|St = x

}
.

Put it differently,
Ct

Mt

= Ẽt

(
CT

MT

)
,

where Mt is the money account and acts as a numeraire. In other words, (Ct/Mt) is
a martingale under P̃. So P̃ is sometimes called “martingale probability measure”.
And since the price of an asset is the expectation of its payoff CT/MT taken with
respect to a probability measure, we call this measure “risk-neutral” measure or
probability.

Change of Measure

Suppose we have a probability space (Ω,F ,P) and a nonnegative r.v. ξ that satisfies
Eξ = 1, then we may define a new probability measure as follows,

P̃(A) =
∫
A

ξ(ω)dP (ω) for all A ∈ F .

We may check that P̃(A) ≥ 0 for all A ∈ F and P̃(Ω) = 1.
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If ξ > 0 a.s., then P̃ is called an “equivalent probability measure” of P, ie, for
any set A, P̃(A) = 0 iff P(A) = 0. ξ is called the Radon-Nikodym density of P̃ w.r.t.
P. In differential form, we may write

dP̃ = ξdP.

For any r.v. X, it is easy to show that

ẼX = EξX,

and that

EX = Ẽ
X

ξ
.

Example Let X be standard normal, ξ = exp(λX − λ2/2), and P̃ be defined as
above. For any function f , we have

Ẽf(X) = Eξf(X)

=

∫
exp(λx− λ2/2)

1√
2π

exp(−x2/2)f(x)dx

=
1√
2π

∫
exp(−(x− λ)2/2)f(x)dx.

So under P̃, X ∼ N(λ, 1). In other words, this particular change of measure shifts
X by a constant, without changing the variance.

Martingale Equivalent Measure

Recall that there is no arbitrage opportunity if and only if there exists a risk-neutral
probability measure P̃ such that asset prices satisfy,

pt = e−r(T−t)ẼtxT ,

where r is risk-free rate. Noting that e−r(T−t) = Mt/MT , we re-write the above
equation,

pt
Mt

= Ẽt
xT

MT

.

P̃ is said to be the martingale equivalent measure of P for the process pt/Mt, since
(pt/Mt) is a martingale under P̃.
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Obviously, if a price process Xt (e.g., pt/Mt) admits an equivalent martingale
measure, then there is no arbitrage. To see this, note that for any admissible trading
strategy, Ẽ(

∫ t

0
hsdXs) = 0. Hence, the self-financing condition htXt = h0X0 +∫ t

0
hsdXs implies

h0X0 = Ẽ0(htXt).

Thus, if htXt > 0, then h0X0 > 0.

Density Process. Let ξ > 0 a.s. and Eξ = 1 and dP̃ = ξdP. We define ξt =
E(ξ|Ft), which is called the density process for P̃ with respect to P. Obviously ξt is
a positive martingale. If Xt is Ft-measurable, then we have

E(ξtXt) = E(ξXt)

ẼXt = EξtXt

Ẽξ−1
t Xt = EXt.

The first statement is an immediate consequence of the law of iterative expectation,
and the second statement is due to

ẼXt = EξXt = E[EξXt|Ft] = E[E[ξ|Ft]Xt] = EξtXt.

The third statement is similarly established. We also have

Bayes Rule.
ẼsXt = ξ−1

s Es(ξtXt), s < t, (3.14)

where Xt is Ft-measurable and Ẽ|Xt| <∞.

Proof For any A ∈ Fs, since dP = ξ−1dP̃,

Ẽ
[
IAξ

−1
s Es(ξtXt)

]
= E [IAEs(ξtXt)]

= E [IAξtXt]

= Ẽ [IAXt]

= Ẽ
[
IAẼsXt

]
.

Since it is true for every A, the proof is complete.

As a result, we have the following lemma,

Lemma: If (Xtξt) is P-martingale, then (Xt) is P̃-martingale.
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Girsanov Theorem

Girsanov Theorem. If (Xt) is P-martingale, and (X̃t) is defined as dX̃t = dXt−
ξ−1
t d[X, ξ]t, then (X̃t) is P̃-martingale. In other words, P̃ is the martingale equivalent
measure for X̃.

Proof It suffices to show that (X̃tξt) is P-martingale.

d(X̃tξt) = X̃tdξt + ξtdX̃t + d[X̃, ξ]t

= X̃tdξt + ξtdXt.

Note that [X̃, ξ]t = [X, ξ]t, since X̃t and Xt differ only by a bounded-variation
process

∫ t

0
ξ−1
s d[X, ξ]s.

If Xt = Wt, where Wt is a Brownian motion, then dW̃t = dWt − ξ−1
t d[W, ξ]t is a

Brownian motion under P̃.

A Special Case of Girsanov Theorem. Let ηt be adapted to Ft and let ξt =

exp
(
−
∫ t

0
ηsdWs − 1

2

∫ t

0
η2sds

)
. If Wt is P-BM, then W̃t = Wt +

∫ t

0
ηsds is BM under

P̃.

Proof Let Lt = −
∫ t

0
ηsdWs, then ξt = exp

(
Lt − 1

2
[L]t
)
. Then we have

d log ξt = d(Lt −
1

2
[L]t) = dLt −

1

2
d[L]t,

and

d log ξt = ξ−1
t dξt −

1

2

1

ξ2t
d[ξ]t.

By unique decomposition of semimartingale, we have

dLt = ξ−1
t dξt.

Hence

ξ−1
t d[W, ξ]t = d[W,L]t = −ηtdt.

To show that W̃t is P̃-BM, we note that [W̃ ]t = t.

Note that in the above notations, ξt is called the stochastic exponential of Lt.
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Black-Scholes Again

Black-Scholes Using Girsanov We may assume a riskfree rate rt and the stock
price St satisfies:

dSt = µtStdt+ σtStdWt,

where µt and σt are adapted to Ft. We may show that

d

(
St

Mt

)
= σt

St

Mt

(
µt − rt
σt

dt+ dWt

)
.

If we define

ηt =
µt − rt
σt

Lt = −
∫ t

0

ηsdWs,

and similarly

ξt = exp

(
Lt −

1

2
[L]t

)
and P̃ such that dP̃ = ξdP.

Then we have

d

(
St

Mt

)
= σt

St

Mt

dW̃t.

Or equivalently,

dSt = rtStdt+ σtStdW̃t.

Then the price of an European call option would be

Ct = Ẽ
{
exp

(
−
∫ T

t

rsds

)
max(ST −K, 0)|Ft

}
= MtẼ

{
CT

MT

|Ft

}
,

where Ẽ is taken w.r.t. P̃.

Note that the process ηt satisfies

µt − rt = ηtσt.

ηt measures the excess return per unit of risk the market offers. For this reason ηt
is called the “market price of risk” process.
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Forwards and Futures

A forward contract is an agreement to pay a specified delivery price K for an asset
at a delivery date T . Suppose the asset price process is St. At time T , the value of
the contract is ST −K. At the time of reaching an agreement, say t, the value of
the contract must be zero,

ẼMt/MT (ST −K) = Ẽ exp

(
−
∫ T

t

rsds

)
(ST −K) = St − P (t, T )K = 0,

where P (t, T ) = Ẽ
(
exp

(
−
∫ T

t
rsds

)
|Ft

)
. Thus K must be St/P (t, T ). K is called

the forward price of the asset. As it is a function of both t and T , we denote it as
Fo(t, T ).

After a forward contract is signed on t, the value of this agreement will most
likely diverge from zero, often substantially. Let u be such that t < u < T . For the
party on the long position, who receives ST and pays Fo(t, T ) at time T , the value
of the agreement at time u is

Vt,u = MuẼ
(
M−1

T

(
ST −

St

P (t, T )

)
|Fu

)
= Su − St

P (u, T )

P (t, T )
.

If the riskfree rate is a constant r, then

Vt,u = Su − exp(r(u− t))St.

If the asset price rises more rapidly than the money account, then the long (short)
position has a positive (negative) value. If the growth rate is less than the riskfree
rate, then the long (short) position has a negative (positive) value. Whichever
happens, one party will have an incentive to default.

A futures contract alleviates the risk of default by margin requirement (initial
margin, marking to margin) and by trading in an exchange market. The futures price
of an underlying asset whose spot price process is St, Fu(t, T ), must be a martingale
process under P̃ with terminal price Fu(T, T ) = ST . To see this, consider a partition
of the life span of a futures contract, t = t0 < t1 < · · · < tn = T . Each interval
[tk, tk+1) represents a “day”. A long position in the futures contract is an agreement
to receive as a cash flow the changes in the futures price, Fu(tk+1, T ) − Fu(tk, T ),
during the time the position is held. A short position receives the opposite. Suppose
the riskfree rate rt is constant within each day. Mtk+1

is Ftk-measurable, since

Mtk+1
= exp

(
−
∫ tk+1

0

rsds

)
= exp

(
−

k∑
k=0

rtk(tk+1 − tk)

)
.
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In equilibrium, any future cash flow must have a current value of zero. That is, for
all k,

MtkẼ
(
M−1

tk+1
(Fu(tk+1, T )− Fu(tk, T )) |Ftk

)
= 0.

Since Mtk+1
is Ftk-measurable, we have

Mtk

Mtk+1

Ẽ (Fu(tk+1, T )− Fu(tk, T )|Ftk) = 0.

Hence Fu(tk, T ) must be a martingale sequence. And obviously, Fu(tn−1, T ) =
Ẽtn−1ST , Fu(tn−2, T ) = Ẽtn−2Fu(tn−1, T ), and so on. By the law of iterative ex-
pectation, we have

Fu(t, T ) = Ẽ(ST |Ft).

Forwards-Futures Spread The difference between forward and futures prices,

Dt = St/P (t, T )− Ẽ(ST |Ft),

is called the forward-futures spread. It is obvious that Dt → 0 as t→ T .

Since St = Ẽt

(
Mt

MT
ST

)
and P (t, T ) = Ẽt

Mt

MT
, we have

Dt =
1

P (t, T )

(
Ẽt

(
Mt

MT

ST

)
− Ẽt

Mt

MT

ẼtST

)
=

1

P (t, T )
c̃ov

(
Mt

MT

, ST |Ft

)
.

If rt is a constant, Dt = 0. If P (t, T ) is positively correlated with ST , which means
that a higher ST goes together with a lower interest rate, then the forward price is
higher than the futures price.

Pricing of Cash Flow

Suppose an asset pays Dt between time 0 and t. Then a long position of the asset
gives us a gain process that satisfies

dGt = dDt + rtGtdt,

or
d(Gt/Mt) = 1/MtdDt.

The risk-neutral price at time t of the cash flow between t and T is thus,

MtẼ(GT/MT |Ft) = MtẼ
(∫ T

t

1/MsdDs|Ft

)
.
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The cash flow may be negative, in which case Dt is decreasing. The cash flow
is most likely discrete, ie,

Dt =
n∑

i=1

diI[0,t](ti),

where 0 < t1 < t2 < · · · < tn ≤ T and di is random payment at time ti. In this case,
the risk neutral price at time t is given by

n∑
i=1

I[t,T ](ti)
(
MtẼ(Mtidi|Ft)

)
.

If di is deterministic, then the above formula reduces to the pricing formula for bond
with fixed coupons.

The Multivariate Case

We first state the multivariate Girsanov theorem. It follows easily from the general
Girsanov theorem.

Multivariate Girsanov Let ηt ∈ Rd be adapted to Ft and let

ξt = exp

(
−
∫ t

0

ηs · dWs −
1

2

∫ t

0

∥ηs∥2ds
)
. (3.15)

If Wt is P-BM, then W̃t = Wt +
∫ t

0
ηsds is BM under P̃.

We consider a stock market of N stocks. Let St = (S1
t , ..., S

N
t ) be the stock

prices and letWt = (W 1
t , ...,W

d
t ) be a d-dimensional independent Brownian Motions.

Assume that for each stock,

dSi
t = µi

tS
i
tdt+ Si

t

d∑
j=1

σij
t dW

j
t ,

= µi
tS

i
tdt+ Si

tσ
i
t · dWt, i = 1, ..., N,

where σi
t = (σi1

t , ..., σ
Nd
t ).

If we find an adapted process (ηt) such that

µi
t − rt = ηt · σi

t, i = 1, ..., N, (3.16)

we may define ξ as in (3.15) and define accordingly P̃ such that W̃t = Wt +
∫ t

0
ηsds

is BM under P̃. Hence

dSi
t = rtS

i
tdt+ Si

tσ
i
t · dW̃t, i = 1, ..., N.
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Or

d

(
Si
t

Mt

)
=

(
Si
t

Mt

)
σi
t · dW̃t.

In other words, each numeraire-denominated stock price is a martingale under P̃.

We restate the crucial condition in (3.16) in matrix form. Let µt = (µ1
t , ..., µ

N
t )

′,
we have

σtηt = µt − rt. (3.17)

Recall that (ηt) is called the “market-price-of-risk” (MPR) process and measures
the drift in price the investor get compensated for taking each unit of risk.

When the equation (3.17) has no solution, martingale equivalent measure for
this market does not exist. In this case, it is always possible to find arbitrage
strategies. This says that no arbitrage implies the existence of the “market-price-
of-risk” process, hence the existence of martingale equivalent measure.

When N > d, some of the securities are “redundant” (derivatives, for example)
and can be replicated by a linear combination of other stocks. Thus we may assume
N = d. If rank(σ) = d, there is at most one MPR process, and accordingly, an
equivalent martingale measure. The market is said to be complete.

Market Completeness LetM = {hT ·XT |(ht)is self-financing}. IfM = L2, the
space of all finite-variance random variables, we say the market is complete.

A necessary and sufficient condition for complete market is that there is an MPR
process and rank(σt) = d. In other words, there exists a unique MPR process.

Hedging a General Contingent Claim

We first state an important theorem.

Theorem 3.4.1 (Martingale Representation Theorem) LetW = (W 1,W 2, ...,W d),
and Ft be the natural filtration of W . If (Mt) is a martingale w.r.t. Ft, then there
exists K = (K1, K2, ..., Kd) such that

∫ t

0
(Kj

s)
2ds <∞ for each j and

Mt = M0 +

∫ t

0

Ks · dWs.

Given a FT -measurable contingent claim CT , the no arbitrage price at time t
satisfies,

Ct

Mt

= Ẽ
(
CT

MT

|Ft

)
.
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The process of (Ct/Mt,Ft) is a P̃ martingale. By martingale representation theorem,
we can find an adapted process (γt) such that

Ct

Mt

= C(0) +

∫ t

0

γsdW̃s.

Let the value of the hedging portfolio be Ht. Suppose we hold ∆t amount of stock
at time t, we have

dHt = ∆tdSt + rt(Ht −∆tSt)dt

= rtHtdt+∆tσtSt(ηtdt+ dWt),

where ηt is the market price of risk process. Hence

d

(
Ht

Mt

)
= ∆tσtSt(ηtdt+ dWt) = ∆tσtStM

−1
t dW̃t.

So we have (
Ht

Mt

)
= H0 +

∫ t

0

∆vσvSvM
−1
v dW̃v.

To hedge Ct, we must have H0 = C0 and

∆t =
Mt

σtSt

γt.

From Risk Neutral Pricing to PDE

Consider the Black-Scholes Model,

dMt = rtMtdt

dSt = µtStdt+ σtStdWt

The MPR η exists,

ηt =
µt − rt
σt

.

And σ is trivially full rank. Hence the market is complete.

Since ST ∈ L2 , CT = max(ST − K, 0) ∈ L2. We know that M−1
t Ct =

ẼtM
−1
T CT . Let F (St, t) = Ct, we have

d

(
F (St, t)

Mt

)
=

1

Mt

(−rtF (St, t)dt+ dF (St, t))

=
1

Mt

(F2 + rtStF1 +
1

2
F11σ

2
tS

2
t − rtF )dt+

St

Mt

σtF1dW̃t.
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The bounded variation part gives the PDE. And the martingale part gives the
hedging strategy, which is

∆t = F1(St, t).

A complete market admits only one martingale equivalent measure, in which case
Ct is unique.

3.5 State Prices

Definition

A state-price deflator is a deflator m for a price process X such that Xm is a
martingale w.r.t. the natural filtration.

Other names for m are stochastic discount factor, state-price density, marginal
rates of substitution, and pricing kernel.

Given a numeraire Mt and an equivalent martingale measure ξ, the state-price
deflator is

mt =
ξt
Mt

To see this,

EsmtXt = Esξt
Xt

Mt

= ξsẼs
Xt

Mt

= ξs
Xs

Ms

= msXs.

Conversely, given mt, we can construct ξt by

ξt = Mtmt.

Risk Premium

mt is an Ito process, hence it can be characterized by

dmt = mtµm,tdt+mt(σm,t · dWt).

Since

dmt = d

(
ξt
Mt

)
= −rtmtdt+M−1

t dξt,

So
µm,t = −rt.
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Let a price process be Si
t ,

dSi
t = Si

tµ
i
tdt+ Si

t(σ
i
t · dWt).

We have

d(mtS
i
t) = mtdS

i
t + Si

tdmt + d[m,Si]t

= mtS
i
t(µ

i
t + µm,t + σm,t · σi

t)dt+mtS
i
t(σm,t + σi

t) · dWt.

(mtSt) is a martingale, so

µi
t + µm,t + σm,t · σi

t = 0.

Hence,
µi
t − rt = −σi

t · σm,t, (3.18)

where both σt and σm,t can be negative. (3.18) characterizes the excess expected
return or risk premium of the stock Si.

Furthermore, if we define

βi
t = −

σi
t · σm,t

σm,t · σm,t

and λm,t = σm,t · σm,t ≡ ∥σm,t∥2,

then we have
µi
t = rt + βi

tλm,t.

βi
t measures the systematic risk in Si

t , and λm,t measures the price of the systematic
risk. Note that ηt = −σm,t, since

ηt · σi
t = µi

t − rt = −σm,t · σi
t for all t.

So
λm,t = ∥ηt∥2.

3.6 Treatment of Dividends

We discuss how to treat dividend payment in risk-neutral pricing framework.

3.6.1 Continuous Payment

We assume that if a stock withholds dividends, the stock price follows a diffusion
process,

dSt = µtStdt+ σtStdWt.
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Now, we may assume that the stock pays dividends continuously at a rate of
dt. Then

dSt = µtStdt+ σtStdWt − dtStdt.

To replicate the price process of a contingent claim, (Ct, t ∈ [0, T ]), we con-
struct a self-financing portfolio ht which holds ∆t stocks at time t. Let Ht be the
value of the portfolio and let Dt denote the dividends paid cumulatively up to time
t and satisfies

dDt = dtStdt.

Then we have

dHt = ∆tdSt +∆tdDt + rt(Ht −∆tSt)dt

= rtHtdt+∆tSt(µt − rt)dt+∆tStσtdWt

= rtHtdt+ σt∆tSt(ηtdt+ dWt),

where

ηt =
µt − rt
σt

is the MPR process. Define dW̃t = dWt + ηtdt. Under P̃, density process of which
is defined as the exponential martingale of Lt = −

∫ t

0
ηsdWs, we have

dHt = rtHtdt+ σt∆tStdW̃t.

In other words, under P̃, the numeraire-deflated process Ht/Mt is a martingale,

d

(
Ht

Mt

)
= σt∆tSt/MtdW̃t.

Hence the price of the contingent claim would be given by

Ct = MtẼt
CT

MT

.

It can be shown that under P̃, the stock price follows

dSt = (rt − dt)Stdt+ σtStdW̃t.

Now let dt = d, rt = r, and σt = σ, we have

ST = S0 exp

[
(r − d− 1

2
σ2)T + σW̃T

]
.

From this we can easily calculate Black-Scholes Formula with continuous dividend
yield d.
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3.6.2 A Different Perspective

Obviously, if we reinvest the dividends, the “gain process” of the stock follows

dGt = µtGtdt+ σtGtdWt.

Consider the market that consists of the stock with dividend reinvestment and
a money account, Xt = (Gt,Mt). This market admits no arbitrage if and only
if Xt/Mt admits an equivalent martingale measure, say, P̃. Then the price of a
contingent claim (Ct, t ∈ [0, T ]) in the unit of a numeraire should be a martingale
under P̃.

To find such a probability measure, we obtain

d

(
Gt

Mt

)
= (µt − rt)Gt/Mtdt+ σtGt/MtdWt = σtGt/Mt

(
µt − rt
σt

+ dWt

)
.

Define W̃t = Wt +
∫ t

0
ηsds, ηt = (µt − rt)/σt, Lt = −

∫ t

0
ηsdWs, and ξt = exp(Lt −

[L]t/2), which corresponds to an equivalent probability measure P̃. According to
Girsanov theorem, W̃t ∼ P̃-Brownian Motion. Then Gt/Mt is P̃-martingale.

3.6.3 Discrete Payment

Suppose the dividends are paid at n time points on [0, T ], 0 < t1 < t2 < ... < tn < T .
At each time point ti, the dividend payment is diS(ti−), where di is Fti-measurable
and S(ti−) denotes the stock price just prior to the payment. The stock price after
the payment is

Sti = Sti− − diSti− = (1− di)Sti−.

We assume that between dividend payment dates the stock price follows,

dSt = µtStdt+ σtStdWt, ti ≤ t < ti+1.

Hence, for time t ∈ [ti, ti+1), the value of hedging portfolio Ht follows

dHt = ∆tdSt + (Ht −∆tSt)dMt

= rtHtdt+∆tSt(µt − rt)dt+∆tStσtdWt

= rtHtdt+ σt∆tSt(ηtdt+ dWt),

where

ηt =
µt − rt
σt

.
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Since the portfolio collects the dividend payment, the portfolio value does not jump
at payment dates. Hence the above SDE describes the portfolio value for all t.

We may define dW̃t = dWt + ηtdt and define P̃ as usual. Then Ht/Mt would
be martingale under P̃ for all t. And

dSt = rtStdt+ σtStd̃Wt, t ∈ [ti, ti+1), i = 0, ..., n.

Now let rt = r and σt = σ, we have

Sti+1− = Si exp

[
(r − 1

2
σ2)(ti+1 − ti) + σ(W̃ti+1

− W̃ti)

]
,

and

Sti+1
= (1− di+1)Si exp

[
(r − 1

2
σ2)(ti+1 − ti) + σ(W̃ti+1

− W̃ti)

]
.

Then we have

ST =

(
S0

n−1∏
i=0

(1− di+1)

)
· exp

[
(r − 1

2
σ2)T + σW̃T

]
.

It is easy to see that we can use the Black-Scholes formula to calculate the price
of European call options on the stock St, with initial value being replaced by(
S0

∏n−1
i=0 (1− di+1)

)
.
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Chapter 4

Term Structure Modeling

4.1 Basics

We study the price of money, i.e., the default-free interest rate. (Think of the interest
rate on bills/notes/bonds issued by the US treasury.) This differs from the price of
a particular bond in that the latter depends on factors other than the time value
of money, such as the credit history of the borrower, the liquidity condition of the
market, and so on.

Term Structure

We assume that a continuum of default-free discount bonds trade continuously at
time t with differing maturities T and prices P (t, T ). Assume P (T, T ) = 1. P (t, T )
is called the term structure.

P (t, T ) can be read along two dimensions:

1. Fix t and let T vary: prices for different maturities.

2. Fix T and let t vary: historical price series of a particular maturity.

Yield Curve

The interest rate implied by the zero-coupon bond is called spot rate, which is given
by

R(t, T ) = − logP (t, T )

T − t
.
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Fixing a t and varying T , we call R(t, T ) the yield curve. Yield curves can be
increasing or decreasing functions of T . In practice, yields to maturity on coupon
bonds are often calculated. The yield to maturity is the internal rate of return
for a coupon bond, or, the constant interest rate that makes the present value of
future cash flow (coupon payments and the face value) equal to the market price
of the bond. Suppose the coupon bond in question pays a series of coupons in
the remaining period (ci at t < ti ≤ T , including the principal), then the yield to
maturity y(r, T ) solves the following equation,

Pc(t, T ) =
∑
ti>t

ci exp(−(ti − t)y(t, T )), (4.1)

where Pc(t, T ) is the market price of the coupon bond. Obviously the yield to ma-
turity is not only a function of T , but also how coupons are paid (annual, biannual,
or quarterly). For coupon bonds, the duration of a coupon bond is defined as:

Dt =

∑
ti>t(ti − t)ci exp(−(ti − t)y(t, T ))∑

ti>t ci exp(−(ti − t)y(t, T ))
.

The duration Dt thus defined is in fact the derivative of − logPc(t, T ) in (4.1) with
respect to y(t, T ). For discount bonds, duration is exactly the term to maturity.
Duration may be understood as a measure of risk for coupon bonds.

Short Rate

The short rate, or the instantaneous rate, measures the current cost of short-term
borrowing.

rt = lim
∆→0

R(t, t+∆) = − lim
∆→0

log(P (t, t+∆))

∆
.

Or,

rt = R(t, t), and

rt = − ∂

∂T
logP (t, t)

Forward Rate

Let t < T1 < T2. Consider a forward contract on a bond that matures at T2: an
agreement at time t to make a payment at T1 and receive a payment in return at
T2.

We can replicate the contract, at time t, by
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• buying a T2 bond

• selling k units of T1 bond.

The cash flow of this portfolio is

• At t, −P (t, T2) + kP (t, T1)

• At T1, -k

• At T2, 1

Since the value of any forward contract should be zero at the time of agreement t,
k must satisfies

k =
P (t, T2)

P (t, T1)
.

Obviously, k should be called the forward price of the T2-bond. The corresponding
yield of holding the T2-bond in the interval of [T1, T2], denoted as F (t, T1, T2), is

F (t, T1, T2) = −
log k

T2 − T1

= − logP (t, T2)− logP (t, T1)

T2 − T1

.

Now it is ready to define forward rate, the forward price for instantaneous
borrowing at time T ,

f(t, T ) = lim
T2→T

F (t, T, T2) = lim
∆→0
− logP (t, T +∆)− logP (t, T )

∆
= − ∂

∂T
logP (t, T ).

The forward rate f(t, T ) contains all information about P (t, T ) and R(t, T ). Specif-
ically, we have

P (t, T ) = exp

(
−
∫ T

t

f(t, u)du

)
,

and

R(t, T ) =

∫ T

t
f(t, u)du

T − t
.

And the short rate rt can be recovered using

rt = f(t, t).

We also have

∂R(t, T )

∂T
= −∂ logP (t, T )

∂T

1

T − t
+

logP (t, T )

(T − t)2

=
f(t, T )

T − t
− 1

T − t
R(t, T ).
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Hence

f(t, T ) = R(t, T ) + (T − t)
∂R(t, T )

∂T
.

When T = t, f(t, t) = R(t, t) = rt. Otherwise, f(t, T ) is greater (less) than R(t, T )
when R(t, T ) is increasing (decreasing). Finally, we have

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

f(t, s)ds.

4.2 The Single-Factor Heath-Jarrow-Morton Mod-

el

4.2.1 The Risk-Neutral Pricing

The Model P (t, T ), R(t, T ), and f(t, T ) contain the same information. The HJM
model (Heath, Jarrow, and Morton, 1992) is a model on f(t, T ):

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

σ(s, T )dWs. (4.2)

Or, in its differential form,

dtf(t, T ) = α(t, T )dt+ σ(t, T )dWt.

• α(t, T ) and σ(t, T ) may depend on (Ws, s ≤ t) and f(t, T ) itself.

• f(0, T ) is deterministic.

•
∫ T

0

∫ u

0
|α(t, u)|dtdu <∞ and E

(∫ T

0

∣∣∫ u

0
σ(t, u)dWt

∣∣ du) <∞.

The Numeraire We use Mt, which satisfies

M0 = 1, and dMt = rtMtdt.

Or

Mt = exp

(∫ t

0

rsds

)
.

Recall that rt = f(t, t). So

rt = f(0, t) +

∫ t

0

α(s, t)ds+

∫ t

0

σ(s, t)dWs.
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So

Mt = exp

(∫ t

0

f(0, s)ds+

∫ t

0

∫ u

0

α(s, u)dsdu+

∫ t

0

∫ u

0

σ(s, u)dWsdu

)
= exp

(∫ t

0

f(0, s)ds+

∫ t

0

∫ t

s

α(s, u)duds+

∫ t

0

∫ t

s

σ(s, u)dudWs

)
.

The Bond We can choose any bond price to construct martingale equivalent
measure under no arbitrage condition. Consider P (t, T ),

P (t, T ) = exp

(
−
∫ T

t

f(t, u)du

)
= exp

(
−
[∫ T

t

f(0, u)du+

∫ t

0

∫ T

t

α(s, u)duds+

∫ t

0

∫ T

t

σ(s, u)dudWs

])
We can check that P (0, T ) = exp

(
−
∫ T

0
f(0, u)du

)
, and P (T, T ) = 1.

Deflation Define

Z(t, T ) = M−1
t P (t, T )

= exp

[
−
∫ T

0

f(0, u)du−
∫ t

0

∫ T

s

α(s, u)duds−
∫ t

0

(∫ T

s

σ(s, u)du

)
dWs

]
= exp

[
−
∫ T

0

f(0, u)du−
∫ t

0

∫ T

s

α(s, u)duds+

∫ t

0

Σ(s, T )dWs

]
,

where Σ(t, T ) = −
∫ T

t
σ(t, u)du. Let Xt be the term in the bracket,

dtZ(t, T ) = d(exp(Xt))

= exp(Xt)dXt +
1

2
exp(Xt)d[X]t

= Z(t, T )

((
1

2
Σ(t, T )2 −

∫ T

t

α(t, u)du

)
dt+ Σ(t, T )dWt

)
.

Change of Measure Then the market-price-of-risk process would be

ηt =
1
2
Σ2(t, T )−

∫ T

t
α(t, u)du

Σ(t, T )

=
1

2
Σ(t, T )− Σ−1

∫ T

t

α(t, u)du.
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Then we can define P̃ and a W̃t such that

dW̃t = dWt + ηtdt.

Then

dtZ(t, T ) = Z(t, T )Σ(t, T )dW̃t.

Hence Z(t, T ) is a P̃-martingale. And under P̃, the bond price P (t, T ) has a drift
term rt:

dtP (t, T ) = P (t, T )(rtdt+ Σ(t, T )dW̃t).

Other Bonds We use P (t, T ) to construct a martingale equivalent measure P̃.
What about other bonds, such as P (t, S), S < T?

Let X = 1 be a claim that pays off at time S. Then P (t, S) is the price of X
at time t,

P (t, S) = MtẼt(M
−1
S ) = Ẽt

(
exp

(
−
∫ S

t

rsds

))
.

And the deflated price process is

Z(t, S) = M−1
t P (t, S) = Ẽt(M

−1
S ).

So the deflated prices of all other bonds are P̃-martingale. This means that their
P̃-drifts are restricted such that ηt is the same market-price-of-risk process for all
bonds. In particular, for all S ∈ [0, T ],

∫ S

t

α(t, s)ds =
1

2
Σ2(t, S)− Σ(t, S)ηt.

Taking ∂/∂S on both sides,

α(t, S) = −Σ(t, S)σ(t, S) + σ(t, S)ηt

= σ(t, S)(ηt − Σ(t, S)).

If there exists an (ηt) such that the above holds, among other regularity con-
ditions, then the market is complete. As in Section ??, we may find a self-financing
portfolio of (Mt, P (t, T )), that replicates any contingent claim US which pays off at
time S < T .
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4.2.2 A Direct Approach

We have

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

σ(s, T )(dW̃s − ηsds)

= f(0, T ) +

∫ t

0

(α(s, T )− σ(s, T )ηs)dt+

∫ t

0

σ(s, T )dW̃s

= f(0, T ) +

∫ t

0

(−Σ(s, T )σ(s, T ))dt+
∫ t

0

σ(s, T )dW̃s.

So as in Duffie (2001), we may directly assume no arbitrage opportunities and there
exists a martingale equivalent measure P̃ such that we may specify f(t, T ) as

f(t, T ) = f(0, T ) +

∫ t

0

µ(s, T )ds+

∫ t

0

σ(s, T )dW̃s,

where

µ(t, T ) = −σ(t, T )Σ(t, T )

= σ(t, T )

∫ T

t

σ(t, s)ds.

Then

rt = f(0, t) +

∫ t

0

σ(s, t)

∫ t

s

σ(s, u)duds+

∫ t

0

σ(s, T )dW̃s.

4.3 Short-Rate Models

The short-rate model is a model on rt. Assume there exists a martingale equivalent
measure P̃. rt is usually specified as a Markov diffusion:

drt = ν(rt)dt+ ρ(rt)dW̃t. (4.3)

Then the term structure P (t, T ) is given as

P (t, T ) = Ẽt

(
exp(−

∫ T

t

rsds)

)
.

Note that the short rate process alone does not recover the term structure, which
is determined by the risk appetite of the market as well as the future short-term
borrowing cost.
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4.3.1 Connection with Forward-Rate Models

Given f(t, T ), we can easily recover rt. And we may recover the forward rate f(t, T )
from the short rate rt as follows. We define g(x, t, T ) as

g(x, t, T ) = − log

[
Ẽ
(
exp

(
−
∫ T

t

rsds

)
| rt = x

)]
Then we have

g(rt, t, T ) = − logP (t, T ) =

∫ T

t

f(t, u)du.

In other words,

f(t, T ) =
∂

∂T
g(rt, t, T ).

Hence,

dtf(t, T ) =
∂2g

∂T∂t
dt+

∂2g

∂T∂x
drt +

1

2

∂3g

∂T∂x2
d[r]t

=

(
∂2g

∂T∂t
ν(rt) +

∂2g

∂T∂t
+

1

2

∂3g

∂T∂x2
ρ2(rt)

)
dt+

∂2g

∂x∂T
ρ(rt)dW̃t.

So

σ(t, T ) =
∂2g(rt, t, T )

∂T∂x
ρ(rt)

Σ(t, T ) = −∂g(rt, t, T )

∂x
ρ(rt).

Note also that

f(0, T ) =
∂g(r0, 0, T )

∂T
.

f(0, T ) together with σ(t, T ) determines f(t, T ) under P̃.

4.3.2 Examples

Ho and Lee Model

The short rate process rt satisfies

drt = νtdt+ ρdW̃t, (4.4)

where νt is deterministic and bounded and ρ is constant.
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For s ≥ t,

rs = rt +

∫ s

t

νudu+

∫ s

t

ρdW̃u.

Hence ∫ T

t

rsds = rt(T − t) +

∫ T

t

∫ s

t

νududs+

∫ T

t

∫ s

t

ρdW̃uds

= rt(T − t) +

∫ T

t

∫ T

u

νudsdu+

∫ T

t

∫ T

u

ρdsdW̃u

= rt(T − t) +

∫ T

t

νu(T − t)du+

∫ T

t

ρ(T − u)dW̃u

Let MT = −
∫ T

t
ρ(T − u)dW̃u. MT is a P̃-martingale and Mt = 0. We have

[M ]T = ρ2
∫ T

t

(T − u)2du.

Then exp(MT − 1
2
[M ]T ) is a (positive) P̃-martingale with exp(Mt − 1

2
[M ]t) = 1.

Hence

Ẽt exp(MT ) = exp

(
1

2
[M ]T

)
Ẽt exp

(
MT −

1

2
[M ]T

)
= exp

(
1

2
[M ]T

)
exp(Mt −

1

2
[M ]t)

= exp

(
1

2
ρ2
∫ T

t

(T − u)2du

)
.

We have

exp

(
−
∫ T

t

rsds

)
= exp (−rt(T − t)) exp

(
−
∫ T

t

νu(T − u)du

)
exp (MT )

Hence
Ẽ
[
e−

∫ T
t rsds|rt = x

]
= e−x(T−t) · e−

∫ T
t νu(T−u)du · e

1
2
ρ2

∫ T
t (T−u)2du.

Hence

g(x, t, T ) = − log
(
Ẽ
(
e−

∫ T
t rsds|rt = x

))
= x(T − t) +

∫ T

t

νu(T − u)du− 1

2
ρ2
∫ T

t

(T − u)2du

= x(T − t) +

∫ T

t

νu(T − u)du− 1

6
ρ2(T − t)3.
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The HJM volatility σ(t, T ) is then

σ(t, T ) = ρ
∂2g(rt, t, T )

∂x∂T
= ρ,

which does not depend on t or T .

And Σ(t, T ) is
Σ(t, T ) = −ρ(T − t).

So Ho and Lee model is equivalent to the following HJM model:

dtf(t, T ) = ρ2(T − t)dt+ ρdW̃t,

with

f(0, T ) =
∂g(r0, 0, T )

∂T
= r0 −

1

2
ρ2T 2 +

∫ T

0

νsds

.

We may easily generalize (4.4) as follows,

drt = νtdt+ ρtdW̃t.

The HJM counterpart would be

dtf(t, T ) = ρ2t (T − t)dt+ ρtdW̃t,

with

f(0, T ) = r0 −
∫ T

t

ρ2s(T − s)ds+

∫ T

0

νsds.

Now the HJM volatility depends on time t.

Vasicek Model

Now we allow the drift depend on rt itself,

drt = (θ − αrt)dt+ ρdW̃t, (4.5)

where θ, α, and ρ are constants. The process described by (4.5) is the well-known
Orstein-Uhlenbeck process. This model translates into a HJM model with volatility
that depends on maturity T as well as time t.

Exercise: Show that the HJM representation of the Vasicek model is

σ(t, T ) = ρ exp(−α(T − t)),
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with

f(0, T ) = θ/α + e−αT (r0 − θ/α)− ρ2

2α2
(1− e−αT )2.

We may generalize (4.5) into the following form,

drt = (θt − αtrt)dt+ ρtdW̃t,

where θt, αt, and ρt are deterministic processes.

Cox-Ingersoll-Ross Model

Both Ho and Lee model and Vasicek model may display negative short rates. The
Cox-Ingersoll-Ross model avoids this problem.

drt = (θ − αrt)dt+ ρ
√
rtdW̃t, (4.6)

where θ, α, and ρ are constants. If θ ≥ ρ2/2, rt is positive a.s. The process described
by (4.6) is the Feller’s Square Root Process. We may easily generalize the CIR model
to allow deterministic processes θt, αt and ρt in place of the corresponding constants.

The HJM equivalent model needs a special function B(t, T ) which is the solu-
tion to the Riccati differential equation

∂B(t, T )

∂t
− αB(t, T )− 1

2
ρ2B2(t, T ) + 1 = 0, with B(T, T ) = 0.

Then we have

g(x, t, T ) = xB(t, T ) + θ

∫ T

t

B(s, T )ds.

Define D(t, T ) = ∂B/∂T . Then the HJM volatility can be written as

σ(t, T ) = ρ
√
rtD(t, T )

Σ(t, T ) = −ρ
√
rtB(t, T ).

The initial value can also be easily calculated,

f(0, T ) = r0D(0, T ) + θ

∫ T

0

D(s, T )ds.
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Black-Karasinski Model

The Black-Karasinski model forces the short rate to be positive by taking exponential
of an Orstein-Uhlenbeck process:

rt = exp(Xt), (4.7)

where
dXt = (θt − αtXt)dt+ ρtdW̃t.

Using Ito’s formula, we may write the Black-Karasinski Model as

drt =

(
(θt − αt log rt)rt +

1

2
ρ2t rt

)
dt+ ρtrtdW̃t.

The General Parametric Model

In general, we may write the short rate model in the following form,

drt = [c0(t) + c1(t)rt + c2(t)rt log rt] dt+ [d0(t) + d1(t)rt]
v dW̃t (4.8)

Here are some special cases.

• c2 = 0, d0 = 0, v = 0.5, CIR

• c1 = 0, c2 = 0, d1 = 0, v = 1, Ho and Lee

• c2 = 0, d1 = 0, v = 1, Vasicek

• d0 = 0, v = 1, Black-Karasinski

In particular, c1 is usually called “mean-reversion” parameter.

If c0 = d1 = 0, rt is Gaussian. It can be shown that g(x, t, T ) satisfies

g(x, t, T ) = A(t, T ) +B(t, T )x.

4.3.3 Affine Models

When g(x, t, T ) is affine in x, ie,

g(x, t, T ) = A(t, T ) +B(t, T )x,

then we call the associated term structure model an affine term structure model.
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The term structure is affine if and only if ν and ρ2 in the definition of short-rate
models (4.3) is affine, ie,

ν(rt) = c0(t) + c1(t)rt

ρ2(rt) = d0(t) + d1(t)rt.

Given ν and ρ, we may recover A and B. First, B satisfies the following Riccati
equation,

∂B(t, T )

∂t
+ c1(t)B(t, T )− 1

2
d1(t)B

2(t, T ) + 1 = 0, with B(T, T ) = 0.

And

A =

∫ T

t

(
c0(s)B(s, T )− 1

2
d0(s)B

2(s, T )

)
ds.

In particular, Gaussian models and the CIR model have explicit solution. Others
may be solved numerically.

4.3.4 The Feynman-Kac Formulation

In a single-factor model, the evolution of short rate depends on one factor only. To
emphasize this point, we may write the short rate model in (4.3) as

rt = Xt, and dXt = ν(Xt)dt+ ρ(Xt)dW̃t. (4.9)

We will see that this formulation extends easily to multi-factor models.

By the Markovian nature of rt, P (t, T ) can be represented as P (t, T ) = F (rt, t).
Recall that

F (x, t) = Ẽt

[
exp

(
−
∫ T

t

rsds

)
|Xt = x

]
= Ẽt

[
exp

(
−
∫ T

t

rsds

)
|rt = x

]
.

It is clear that F solves the following partial differential equation,

F2(x, t) + ν(x)F1(x, t) +
1

2
ρ2(x)F11(x, t)− xF (x, t) = 0 (4.10)

with
F (x, T ) = 1.

We can thus solve the above pde numerically for F (x, t), and thus P (t, T ).
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4.4 Multi-factor Models

Now we assume the economy is subject to more than one “shocks”. Let W =
(W 1, ...,W d)′ be a d-dimensional Brownian Motion.

4.4.1 Multi-factor Heath-Jarrow-Morton Model

Let σ = (σ1, ..., σd)
′, we can specify the forward rate as

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

σ(s, T ) · dWs

= f(0, T ) +

∫ t

0

α(s, T )ds+
d∑

i=1

∫ t

0

σi(s, T )dW
i
s .

In differential form,

dtf(t, T ) = α(t, T )dt+ σ(t, T ) · dWt.

For example, we may have

dtf(t, T ) = α(t, T )dt+ σ1dW
1
t + σ2e

−κ(T−t)dW 2
t ,

where σ1, σ2, and κ are constants. In this model, W 1 provides “shocks” that are
felt equally by all points on the yield curve and W 2 “shocks” that are felt only in
the short term.

For a small interval ∆,

f(t+∆, T )− f(t, T ) ≈ ∆α(t, T ) +
d∑

i=1

σi(t, T )(W
i
t+∆ −W i

t ).

Hence

lim
∆→0

1

∆
var (f(t+∆, T )− f(t, T )) =

d∑
i=1

σ2
i (t, T ).

And

lim
∆→0

1

∆
cov (f(t+∆, T )− f(t, T ), f(t+∆, S)− f(t, S)) =

d∑
i=1

σi(t, T )σi(t, S).

We may define an instantaneous correlation coefficient for the increments of the
forward rate, ∑d

i=1 σi(t, T )σi(t, S)√∑d
i=1 σ

2
i (t, T ) ·

∑d
i=1 σ

2
i (t, S)

.
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If d = 1, the increments of the forward rates are perfectly correlated everywhere on
the yield curve.

The results of single-factor HJM may be easily generalized. Again we use Mt

as numeraire and denote the discounted bond price as Z(t, T ) = M−1
t P (t, T ). We

have

dtZ(t, T ) = Z(t, T )

[(
1

2
(Σ · Σ)(t, T )−

∫ T

t

α(t, u)du

)
dt+ Σ(t, T ) · dWt

]
Then we seek an η = (ηt) ∈ Rd such that

Σ(t, T ) · ηt =
1

2
(Σ · Σ)(t, T )−

∫ T

t

α(t, u)du.

For the above to have solution, it is necessary that the matrix Σ ≡ (Σi(t, Tj)) be
full rank for all t and Tj. The we define a P̃ such that W̃t defined below is P̃-BM,

dW̃t = dWt + ηtdt.

Under P̃, Zt(t, T ) is then martingale,

dtZ(t, T ) = Z(t, T )Σ(t, T ) · dW̃t.

The bond price satisfies

dtP (t, T ) = P (t, T )
(
rtdt+ Σ(t, T ) · dW̃t

)
.

And the forward rate,

dtf(t, T ) = −(σ · Σ)(t, T )dt+ σ · dW̃t.

4.4.2 Multi-factor Short Rate Models

Let W̃ = (W̃ 1, W̃ 2, ..., W̃ d) be a d-dimensional Brownian Motion under P̃. And
Let X = (X1, X2, ..., XN) be the N factors that determines the short rate rt. X
generally includes a factor that is the short rate itself.

We write

rt = r(Xt), (4.11)

where Xt satisfies

dXt = ν(Xt)dt+ ρ(Xt) · dW̃t. (4.12)
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The term structure P (t, T ) can then be represented as

P (t, T ) = Ẽt

[
exp

(
−
∫ T

t

r(Xs)ds

)]
.

Of course, any derivative that has a terminal payment of g(XT ) may be priced as

Ẽt

[
exp

(
−
∫ T

t

r(Xs)ds

)
g(XT )

]
.

4.4.3 Feynman-Kac Formulation

It is easy to extend the Feynman-Kac formulation of single-factor short rate model
in (4.10) to the multi-factor case. Let F (x, t) = P (t, T ), we have

F2(x, t) + ν(x) · F1(x, t) +
1

2
tr [ρ(x)ρ(x)′F11(x, t)]− r(x)F (x, t) = 0, (4.13)

with
F (x, T ) = 1. (4.14)

Obviously, if we change the boundary condition in (4.14) to F (x, T ) = g(x), F (x, t)
prices any general derivative with terminal payment g(XT ).

4.5 Pricing Interest Rate Products

In this section we briefly review the pricing of some popular interest rate products,
given the term structure P (t, T ).

4.5.1 Bond with Fixed Coupons

Suppose the coupon rate (uncompounded) is k and the payment is made at a se-
quence of dates Ti = T0 + i∆. The cash flow is shown in the diagram

This is equivalent to owning a Tn-bond and k∆ units of Ti-bond for each i = 1, ..., n:{
P (T0, Tn)

k∆P (T0, Ti), i = 1, ..., n.
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From

k∆
n∑

i=1

P (T0, Ti) + P (T0, Tn) = 1,

we can determine the appropriate coupon rate,

k =
1− P (T0, Tn)

∆
∑n

i=1 P (T0, Ti)
.

4.5.2 Floating-Rate Bond

Now the coupon rate paid at time Ti is the floating rate at previous payment date
Ti−1, which is defined as

L(Ti−1) =
1

∆

(
1

P (Ti−1, Ti)
− 1

)
.

The cash flow is illustrated in the diagram.

The value of ∆L(Ti−1) at T0 is

MT0ẼT0

(
M−1

Ti
∆L(Ti−1)

)
= MT0ẼT0

[
M−1

Ti

(
1

P (Ti−1, Ti)
− 1

)]
= MT0ẼT0

[
P−1(Ti−1, Ti)ẼTi−1

(
M−1

Ti

)
−M−1

Ti

]
= MT0ẼT0

[
ẼTi−1

M−1
Ti−1
−M−1

Ti

]
= MT0ẼT0

[
M−1

Ti−1
−M−1

Ti

]
= P (T0, Ti−1)− P (T0, Ti).

Note that P−1(Ti−1, Ti) is FTi−1
-measurable and P (Ti−1, Ti) = MTi−1

ẼTi−1
M−1

Ti
. The

contingent claim ∆L(Ti−1) can be replicated by buying a Ti−1-bond and sell a Ti-
bond. At time Ti−1, buy P−1(Ti−1, Ti) units of Ti-bond. The value of floating rate
bond is then

P (T0, Tn) +
n∑

i=1

(P (T0, Ti−1)− P (T0, Ti)) = P (T0, T0) = 1.
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4.5.3 Swaps

A swap contract exchanges a sequence of floating rate payments for a sequence of
fixed-rate payments or vice sersa. The cash flow is shown in the diagram.

Entering a swap contract is equivalent to buying a fixed-coupon bond and selling a
floating-rate bond. The former is worth

P (T0, Tn) + k∆
n∑

i=1

P (T0, Ti),

and the latter is worth 1. So the fixed coupon rate k must satisfy

k =
1− P (T0, Tn)

∆
∑n

i=1 P (T0, Ti)
.

4.5.4 Forward Swaps

The value of the swap at time T0 is

X = P (T0, Tn) + k∆
n∑

i=1

P (T0, Ti)− 1.

The value of X at time t must be

MtẼt

(
M−1

T0
X
)

= MtẼt

(
M−1

T0
P (T0, Tn) + k∆

n∑
i=1

M−1
T0

P (T0, Ti)−M−1
T0

)

= MtẼt

(
ẼT0M

−1
Tn

+ k∆
n∑

i=1

ẼT0M
−1
Ti
−M−1

T0

)

= MtẼtM
−1
Tn

+ k∆
n∑

i=1

MtẼtM
−1
Ti
−MtẼtM

−1
T0

= P (t, Tn) + k∆
n∑

i=1

P (t, Ti)− P (t, T0) = 0.

So the forward swap rate must be

k =
P (t, T0)− P (t, Tn)

∆
∑n

i=1 P (t, Ti)
.

When t = T0, k is equal to the swap rate.
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4.5.5 Swaptions

A swaption is a contract to enter a swap at time T0 with swap rate k. The value of
the swaption at time T0 is

X = max

(
P (T0, Tn) + k∆

n∑
i=1

P (T0, Ti)− 1, 0

)
.

We can price this like any other contingent claims.

4.5.6 Caps and Floors

A caps contract is an agreement that never pays more than a fixed rate k. So a cap
contract pays at time Ti

X = ∆max (L(Ti−1)− k, 0) .

X is called a “caplet”. Note that

∆L(Ti−1)−∆k =
1

P (Ti−1, Ti)
− 1−∆k

= (1 + ∆k)

(
1

P (Ti−1, Ti)(1 + ∆k)
− 1

)
= (1 + ∆k)P−1(Ti−1, Ti)

(
1

1 + ∆k
− P (Ti−1, Ti)

)
.

So

X = ∆max (L(Ti−1)− k, 0)

= (1 + ∆k)P−1(Ti−1, Ti)max

(
1

1 + ∆k
− P (Ti−1, Ti), 0

)
.

So the value of X at time t is

MtẼt

(
M−1

Ti
X
)

= (1 + ∆k)MtẼt

(
M−1

Ti
P−1(Ti−1, Ti)max

(
1

1 + ∆k
− P (Ti−1, Ti), 0

))
= (1 + ∆k)MtẼt

((
ẼTi−1

M−1
Ti

)
P−1(Ti−1, Ti)max

(
1

1 + ∆k
− P (Ti−1, Ti), 0

))
= (1 + ∆k)MtẼt

(
M−1

Ti−1
max

(
1

1 + ∆k
− P (Ti−1, Ti), 0

))
.

This is (1 + ∆k) units of put option on the Ti-bond with strike price (1 + ∆k) and
maturity date Ti−1.

A floor contract is an agreement to never pay less than k at each Ti.
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Chapter 5

Econometric Issues

5.1 Basics on Markov Processes

Notation. We consider a time-homogeneous Markov process (Xt). In this case,

Pt(x,A) = P (Xt ∈ A|X0 = x) = P (Xt+s ∈ A|Xs = x) .

Pt(x,A) is called transition probability and may be characterized by transition den-
sity pt(x, y, t),

Pt(x, dy) = p(t, x, y)dy.

Pt(x,A) can also be characterized by conditional moments:

Ptf(x) ≡ E (f(Xt)|X0 = x) =

∫
Pt(x, dy)f(y) =

∫
p(t, x, y)f(y)dy.

It is clear that Pt is a functional operator,

Pt : f → Ptf.

Chapman-Kolmogorov Equation. For any homogeneous Markov process, we
have

Ps+t(x,A) =

∫
Ps(x, dy)Pt(y, A). (5.1)

Proof:

Ps+t(x,A) = P (Xt+s ∈ A|X0 = x)

= E [P (Xt+s ∈ A|Xs) |X0 = x]

= E [f(Xs)|X0 = x] ←↩ f(y) = P (Xt+s ∈ A|Xs = y) = Pt(y, A)
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= Psf

=

∫
Ps(x, dy)f(y)

=

∫
Ps(x, dy)Pt(y, A).

In terms of conditional moments, we have for any positive measurable function f ,

Ps+tf = PsPtf. (5.2)

Proof:

Pt+sf(x) =

∫
Ps+t(x, dz)f(z)

=

∫ ∫
Ps(x, dy)Pt(y, dz)f(z)

=

∫
Ps(x, dy)

∫
Pt(y, dz)f(z)

= (PsPtf)(x).

Set f = 1A, this becomes the Chapman-Kolmogorov Equation (5.1).

Infinitestimal Generator. We may denote P0 ≡ identity operator. Define

Af(x) = lim
t→0

Ptf(x)− P0f(x)

t
= lim

t→0

Ptf(x)− f(x)

t
. (5.3)

If Xt follows the following diffusion,

dXt = µ(Xt)dt+ σ(Xt)dWt,

We have

f(Xt) = f(X0) +

∫ t

0

(µf ′ +
1

2
σ2f ′′)(Xs)ds+

∫ t

0

(σf ′)(Xs)dWs.

Hence

Ptf(x) = f(x) + (µf ′ +
1

2
σ2f ′′)(x)t+O(t2).

So

Af = lim
t→0

Ptf − f

t
= µf ′ +

1

2
σ2f ′′.

Using this infinitestimal generator, we can write Ptf(x) = E(f(Xt)|X0 = x) in
the form of a Taylor series expansion,

Ptf(x) = f(x) + Af(x)t+
1

2
A2f(x)t2 + · · ·+ 1

j!
Ajf(x)tj +O(tj+1). (5.4)
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Kolmogrov Forward and Backward Equations. We have

d

dt
Ptf = lim

s→0

Pt+sf − Ptf

s
= lim

s→0

Pt(Psf − f)

s
= PtAf (5.5)

= lim
s→0

Ps(Ptf)− (Ptf)

s
= APtf (5.6)

(5.5) and (5.6) are Kolmogrov forward and backward equations, respectively. The
above also proves that Pt and A commutes.

Note that

PtAf(x) =

∫
(Af)(y)p(t, x, y)dy =

∫
(µf ′ +

1

2
σ2f ′′)(y)p(t, x, y)dy

= −
∫

f(y)
∂

∂y
(µ(y)p(t, x, y))dy +

∫
f(y)

∂2

∂y2
(
1

2
σ2(y)p(t, x, y))dy.

Since Ptf(x) =
∫
f(y)p(t, x, y)dy,

d

dt
Ptf(x) =

∫
f(y)

∂

∂t
p(t, x, y).

So (5.5) results in

∂

∂t
p(t, x, y) = − ∂

∂y
(µ(y)p(t, x, y)) +

1

2

∂2

∂y2
(σ2(y)p(t, x, y)), (5.7)

which is the more common form of the Kolmogrov forward equation. Similarly,

APtf(x) = A

∫
f(y)p(t, x, y)dy

= (µ(x)
∂

∂x
+

1

2
σ2(x)

∂2

∂x2
)

∫
f(y)p(t, x, y)dy

=

∫
f(y)

(
µ(x)

∂

∂x
p(t, x, y) +

1

2
σ2(x)

∂2

∂x2
p(t, x, y)

)
dy.

Hence
∂

∂t
p(t, x, y) = µ(x)

∂

∂x
p(t, x, y) +

1

2
σ2(x)

∂2

∂x2
p(t, x, y), (5.8)

which is the backward Kolmogrov equation.

5.2 MLE of Parametric Diffusion Models

Suppose the data generating process is parametric,

dXt = µ(Xt, θ0) + σ(Xt, θ0)dWt,
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where θ0 is a parameter vector.

We observe Xt at evenly spaced time points, ∆, 2∆, ..., n∆ ≡ T . From these
observations we want to estimate θ0.

5.2.1 Simple Cases

When p(t, x, y) has closed-form expression (GBM, Ornstein-Uhlenbeck, CIR), we
can easily form the log likelihood function as

L =
n∑

i=1

l(∆, X(i−1)∆, Xi∆),

where
l(∆, X(i−1)∆, Xi∆) = log p(∆, X(i−1)∆, Xi∆).

Here we may safely ignore the log likelihood function of X0.

5.2.2 Naive MLE

When p(t, x, y) does not have a closed-form expression, we may apply MLE to the
Euler approximation of the original diffusion,

Xi∆ = X(i−1)∆ + µ(X(i−1)∆, θ0)∆ + σ(X(i−1)∆, θ0)Zi,

where (Zi) are a sequence of independent N(0,∆) random variables.

5.2.3 Exact MLE

We may also obtain p(∆, X(i−1)∆, Xi∆) by solving Kolmogrov’s forward or backward
equation numerically. A boundary problem for the forward equation can be specified
as

∂

∂t
p(t, x, y) = − ∂

∂y
(µ(y)p(t, x, y)) +

1

2

∂2

∂y2
(σ2(y)p(t, x, y)),

with

p(0, x, y) = δ(x− y)

p(t, x,∞) = p(t, x,−∞) = 0.

For each i, let x = X(i−1)∆, we solve for p(∆, X(i−1)∆, Xi∆). For more details, see Lo
(1988).
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5.2.4 Approximate MLE

The idea is to construct a closed-form sequence of approximations to p(∆, X(i−1)∆, z):
p(J)(∆, X(i−1)∆, z), J = 1, 2, 3, ... As J →∞, p(J) → p.

Ait-Sahalia (2002) first transform Xt into a process Zt whose transition density
pZ is close to N(0, 1), making possible an expansion of pZ around N(0, 1). This
involves two steps.

(1) Transform Xt into Yt by

Yt =

∫ Xt ds

σ(Xs)
=: γ(Xt).

γ is obviously increasing and hence invertible. Using Ito’s formula,

dγ(Xt) =

(
µ(Xt)

σ(Xt)
− 1

2
σ′(Xt)

)
dt+ dWt.

Hence
dYt = µY (Yt)dt+ dWt,

where

µY (Yt) =
µ(γ−1(Yt))

σ(γ−1(Yt))
− 1

2
σ′(γ−1(Yt)).

(2) Transform Yt into Zt by

Zt = ∆−1/2(Yt − y0).

Now define the approximation to pZ(∆, z0, z) as

p
(J)
Z (∆, z0, z) = ϕ(z)

J∑
j=0

ξ(j)Hj(z),

where ϕ is the density function for standard normal distribution and (Hj(z)) are
Hermite polynomials:

Hj(z) = ez
2/2 dj

dzj

(
e−z2/2

)
, j ≥ 0.

ξ(j) satisfies

ξ(j) =
1

j!

∫
Hj(z)pZ(∆, z0, z)dz
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=
1

j!

∫
Hj(z)∆

1/2pY (∆, y0,∆
1/2z + y0)dz

=
1

j!

∫
Hj(∆

−1/2(y − y0))pY (∆, y0, y)dy

=
1

j!
E
(
Hj(∆

−1/2(Y∆ − y0))|Y0 = y0
)
. (5.9)

Note that pY (∆, y0, y) = ∆−1/2pZ(∆, z0,∆
−1/2(y−y0)). Now let f(y) = Hj(∆

−1/2(y−
y0)). (5.9) reduces to P∆f(y0), which allows Taylor-type expansion,

P∆f(y0) = f(y0) +
K∑
k=1

1

k!
(Akf)(y0)∆

k +O(∆K+1).

We choose the orders of approximation J andK. Then ξ and thus p
(J)
Z (∆, z0, z)

can be explicitly calculated. We then transform p
(J)
Z (∆, z0, z) back to p

(J)
X (∆, x0, x),

which is an approximation of pX(∆, x0, x).

5.3 GMM of Parametric Diffusions

5.3.1 Naive GMM

We have
dXt = µ(Xt, θ0) + σ(Xt, θ0)dWt.

By Euler approximation,

Xt+∆ ≈ Xt + µ(Xt, θ0)∆ + σ(Xt, θ0)(Wt+∆ −Wt).

Let εt+∆ = Xt+∆ −Xt + µ(Xt, θ0)∆, we have

E(εt+∆|Xt) = 0

E(ε2t+∆|Xt) = σ2(Xt, θ0)∆.

So we at least have four moment conditions:

E(εt+∆) = 0

E(εt+∆Xt) = 0

E(ε2t+∆ − σ2(Xt, θ0)∆) = 0

E[(ε2t+∆ − σ2(Xt, θ0)∆)Xt] = 0

For more details, see Chan et. al. (1992).
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5.3.2 Simulated Moment Estimation

The idea is to use simulation to generate simulated moments, which are matched
with sample moments.

The sample moment is simply

Ĝn =
1

n

n∑
i=1

f(Xi∆).

For each choice of parameter vector θ, we simulate a sequence of Xθ
b∆, b = 1, 2, ..., B,

where B is a large number. The simulated moments are thus

G̃(θ) =
1

B

B∑
b=1

f(Xθ
b∆).

Let
Gn(θ) = G̃(θ)− Ĝn.

The GMM estimator is given as

θ̂n = argminθG
′
n(θ)WnG

′
n(θ),

where Wn is an appropriate distance matrix. See Gallant and Tauchen (1996) for
more details.

The key assumption for the above strategy to work is that Xt is geometrically
ergodic. Geometrical Ergodicity means that for some ρ ∈ (0, 1), there is a probability
measure P such that for any initial point x,

ρ−t∥Pt(x, ·)− P∥v → 0 as t→∞,

where ∥ · ∥v is the total variation norm defined as

∥u∥v = sup
A
|u(A)|.

5.3.3 Exact GMM

If we assume that Xt is stationary, then Ef(Xt) does not depend on t. This leads
to

d

dt
Ef(Xt) = lim

∆→0

1

∆
(Ef(Xt+∆)− Ef(Xt))

= E
[
lim
∆→0

1

∆
(Ef(Xt+∆)− Ef(Xt)) |Xt

]
= E

[
lim
∆→0

1

∆
(Ef(X∆)− Ef(X0)|X0 = Xt)

]
= EAf(Xt) = 0 (5.10)
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(5.10) holds for any measurable function and may serve enough number of moment
conditions for GMM.

We can find more moment conditions. Define

P ∗
t f

∗(y) = E (f ∗(X0)|Xt = y.) ,

where f ∗ is any measurable function. Obviously P ∗
0 f

∗ = f ∗. And we define the
backward infinitestimal generator

A∗f ∗ = lim
t→0

P ∗
t f

∗ − f ∗

t
.

P ∗
t is the adjoint of Pt. To see this,

⟨f ∗(X0), Ptf(X0)⟩ ≡ E [f ∗(X0)E(f(Xt)|X0)]

= E [f ∗(X0)f(Xt)]

= E [E(f(X0)|Xt)f(Xt)]

= ⟨P ∗
t f

∗(Xt), f(Xt)⟩
= ⟨P ∗

t f
∗(X0), f(X0)⟩

The last equality uses the stationarity of Xt. We can also show that A∗ is the adjoint
of A. Then we have

⟨PtAf(X0), f
∗(X0)⟩ = ⟨APtf(X0), f

∗(X0)⟩ = ⟨f(X0), P
∗
t A

∗f ∗(X0)⟩.

The inner product on the left,

⟨PtAf(X0), f
∗(X0)⟩ = E[E(Af(Xt)|X0)f

∗(X0)] = E[Af(Xt)f
∗(X0)].

The inner product on the right,

⟨f(X0), P
∗
t A

∗f ∗(X0)⟩ = ⟨f(Xt), P
∗
t A

∗f ∗(Xt)⟩
= E[f(Xt)E(A∗f ∗(X0)|Xt)]

= E[f(Xt)A
∗f ∗(X0)].

Hence

E[Af(Xt)f
∗(Xt−∆)− f(Xt)A

∗f ∗(Xt−∆)] = 0. (5.11)

(5.11) offer more choices of moment conditions for GMM. In particular, if f ∗ is a con-
stant function, (5.11) reduces to (5.10). For more details, Hansen and Scheinkman
(1995).
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5.3.4 Eigen GMM

Consider the infinitestimal generator A of Xt. It is well known from the spectral
theory of diffusion processes that for many diffusions, the set of eigenvalues (spec-
trum) Λθ for A are positive and discrete. So Λθ can be written as (λ1, λ2, ..., λn, ...),
where 0 ≤ λ1 < λ2 < ... < λn < ....

Let (λ, ϕ) be any eigen-pair of A. We have

Aϕ = −λϕ.

Then

dPtϕ

dt
= lim

∆→0

Pt+∆ϕ− Ptϕ

∆
= PtAϕ = −λPtϕ.

This is ordinary differential equation on Ptϕ. It is well known that

Ptϕ = e−λtϕ.

Now apply Ito’s formula to eλtϕ(Xt),

deλtϕ(Xt) = λeλtϕ(Xt)dt+ eλtϕ′(Xt)dXt +
1

2
eλtϕ′′(Xt)d[X]t

=

(
λeλtϕ(Xt) + eλtϕ′(Xt)µ(Xt) +

1

2
eλtϕ′′(Xt)σ

2(Xt)

)
dt

+eλtϕ′(Xt)σ(Xt)dWt

= eλt(λϕ(Xt) + Aϕ(Xt))dt+ eλtϕ′(Xt)σ(Xt)dWt

= eλtϕ′(Xt)σ(Xt)dWt.

Hence,

ϕ(Xt) = e−λtϕ(X0) +

∫ t

0

e−λ(t−s)ϕ′(Xs)σ(Xs)dWs.

So

E(ϕ(Xt+∆)|Xt) = e−λ∆ϕ(Xt),

which leads to desired moment condition,

E
[(
ϕ(Xt+∆)− eλ∆ϕ(Xt)

)
g(Xt)

]
= 0, (5.12)

where g can be any measurable function.
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5.4 Estimation of Nonparametric Models

The methodology of MLE and GMM presupposes correct parameterization of the
diffusion models (or equivalently the infinitestimal generator). Any misspecification
leads to inconsistency of those estimators. The problem of parameterization can be
avoided by the use of nonparametric diffusion models, the time-homogeneous version
of which is given as,

dXt = µ(Xt)dt+ σ(Xt)dWt.

Ignoring terms in (5.4) that are of smaller order than O(∆) , we obtain

E[f(Xt+∆)|Xt = x] = f(x) + Af(x)∆ +O(∆2),

where Af(x) = µ(x)f ′(x) + 1
2
σ2(x)f ′′(x). Then we have

Af(x) =
1

∆
E[(f(Xt+∆)− f(Xt))|Xt = x] +O(∆).

Let f be such that f(x) = x. Then we have

Af(x) = µ(x) =
1

∆
E[(Xt+∆ −Xt)|Xt = x] +O(∆).

Let f(x) = (x−Xt)
2. We have Af(x) = 2µ(x)(x−Xt) + σ2(x), and

σ2(x) =
1

∆
E[(Xt+∆ −Xt)

2|Xt = x] +O(∆).

We can estimate E[(Xt+∆ − Xt)|Xt = x] and E[(Xt+∆ − Xt)
2|Xt = x] using

Nadaraya-Watson kernel estimator.

µ̂(x) =

∑n
i=1K(

X(i−1)∆−x

h
)(Xi∆ −X(i−1)∆)

∆
∑n

i=1K(
X(i−1)∆−x

h
)

σ̂2(x) =

∑n
i=1K(

X(i−1)∆−x

h
)(Xi∆ −X(i−1)∆)

2

∆
∑n

i=1K(
X(i−1)∆−x

h
)

.

The Nadaraya-Watson estimators are consistent. To see this, first note that

1

nh

n∑
i=1

K

(
X(i−1)∆

h

)
≈ 1

Th

∫ T

0

K

(
Xs − x

h

)
ds

=
1

Th

∫ ∞

−∞
K

(
s− x

h

)
L(T, s)ds
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=
1

T

∫ ∞

−∞
K (s)L(T, x+ hs)ds

→ 1

T

∫ ∞

−∞
K (s)L(T, x)ds

=
1

T
L(T, x),

where L(T, x) denotes the local time of Xt, and the derivation uses the Occupation
Time Formula, ∫ t

0

f(Xs)ds =

∫ ∞

−∞
f(x)L(T, x)dx.

And

1

nh

n∑
i=1

K

(
X(i−1)∆ − x

h

)(
Xi∆ −X(i−1)∆

∆

)
≈ 1

Th

∑
K

(
X(i−1)∆ − x

h

)
µ(X(i−1)∆)∆

≈ 1

Th

∫ t

0

K

(
Xs − x

h

)
µ(Xs)ds

=
1

Th

∫ ∞

−∞
K

(
s− x

h

)
µ(s)L(T, s)ds

→ 1

T
µ(x)L(T, x).

See Jiang and Knight (1997) and Bandi and Phillips (2003).

We may obtain better precision by keeping more terms in (5.4). For example,
we have

E[f(Xt+∆)|Xt = x] = f(x) + Af(x)∆ +
1

2
A2f(x)∆2 +O(∆3), (5.13)

and

E[f(Xt+2∆)|Xt = x] = f(x) + Af(x)2∆ +
1

2
A2f(x)4∆2 +O(∆3). (5.14)

4(5.13)-(5.14) would give us

Af(x) =
1

2∆
{4E[f(Xt+∆)−f(Xt)|Xt = x]−E[f(Xt+2∆)−f(Xt)|Xt = x]}+O(∆2).

More precise estimators of µ and σ2 (in the order of ∆2) then follow.
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5.5 Semiparametric Models

We consider stationary diffusions satisfying either

dXt = µ(Xt)dt+ σ(Xt, θ)dWt, (5.15)

or
dXt = µ(Xt, θ)dt+ σ(Xt)dWt. (5.16)

From Kolmogrov Forward Equation, we have

∂

∂∆
p(∆, x, y) = − ∂

∂y
(µ(y)p(∆, x, y))

+
1

2

∂2

∂y2
(σ2(y)p(∆, x, y)).

By stationarity, the density of marginal distribution is time-invariant, ie,

∂

∂∆
π(y) =

∂

∂∆

∫ ∞

0

p(∆, x, y)π(x)dx

=

∫ ∞

0

∂

∂∆
p(∆, x, y)π(x)dx

=

∫ ∞

0

(
− ∂

∂y
(µ(y)p(∆, x, y)) +

1

2

∂2

∂y2
(σ2(y)p(∆, x, y))

)
π(x)dx

= − ∂

∂y

(
µ(y)

(∫ ∞

0

p(∆, x, y)π(x)dx

))
+
1

2

∂2

∂y2

(
σ2(Xt+∆)

(∫ ∞

0

p(∆, x, y)π(x)dx

))
= − ∂

∂y
(µ(y)π(y)) +

1

2

∂2

∂y2
(
σ2(y)π(y)

)
= 0.

Hence
d2

x2
(σ2(x)π(x)) = 2

d

dx
(µ(x)π(x)). (5.17)

Suppose π(0) = 0, we have

µ(x) =
1

2π(x)

d

dx
(σ2(x)π(x)), (5.18)

and

σ2(x) =
2

π(x)

∫ x

0

µ(u)π(u)du. (5.19)
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For model (5.15), in which we have prior knowledge on the structure of σ2,
we may parametrically estimate σ2 and nonparametrically estimate µ using (5.18).
For model (5.16), we may similarly estimate σ2 nonparametrically using (5.19), with
prior knowledge of µ. See Ait-Sahalia (1996) for more details.
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Appendix A

Appendix to Chapter 1

A.1 Classical Derivation of CAPM

A.1.1 Efficiency Frontier without Riskfree Asset

Suppose there are N risky assets, and the return vector of these assets has a mean
of µ and a covariance matrix Σ. Each agent selects a portfolio of these assets h,
where h′ι = 1 and ι is a vector of ones. Thus the portfolio return has mean µh = h′µ
and variance σ2

h = h′Σh. We assume that all agents in the economy are identical
with utility function u(µh, σ

2
h). It is understood that u(·, ·) is increasing in µh and

decreasing in σ2
h.

Given an objective mean return of portfolio, agents try to find a portfolio that
minimizes the variance. Mathematically, the following problem is to be solved,

min
h

1

2
h′Σh,

subject to
h′µ = µh and h′ι = 1.

The Lagrangian function is given by

L =
1

2
h′Σh+ λ1(h

′µ− µh) + λ2(h
′ι− 1).

The first order conditions are

Σh = λ1µ+ λ2ι, (A.1)

µ′h = µh, (A.2)

ι′h = 1. (A.3)
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(A.1) yields
h = Σ−1(λ1µ+ λ2ι). (A.4)

Pre-multiply (A.4) with µ′ and ι′, respectively, we obtain

Aλ1 +Bλ2 = µh

Bλ1 + Cλ2 = 1,

where
A = µ′Σ−1µ, B = µ′Σ−1ι, C = ι′Σ−1ι.

Define D = AC −B2. We obtain

λ1 =
1

D
(Cµh −B), λ2 =

1

D
(−Bµh + A).

Plug in (A.4), we obtain
h = g0 + g1µh, (A.5)

where

g0 =
1

D
(AΣ−1ι−BΣ−1µ), g1 =

1

D
(CΣ−1µ−BΣ−1ι).

The variance of the return on h is given by

σ2
h = h′Σh = g′0Σg0 + 2µhg

′
0Σg1 + µ2

hg
′
1Σg1.

Hence the pairs (µh, σh) trace a hyperbola boundary, the upper boundary of which
is called the efficiency frontier.

Note that the minimum-variance portfolio h (A.5) is linear in µh. If we know
two minimum-variance portfolios h1 and h2 with mean returns µ1 and µ2, respec-
tively, then we know all minimum-variance portfolios. Indeed, for all expected
return µa, the corresponding minimum-variance portfolio can be constructed by
ha = αh1 + (1 − α)h2, where α is obtained by solving µa = αµ1 + (1 − α)µ2. This
observation is often called the two mutual fund theorem.

A.1.2 CAPM

Suppose there is a money account with a risk-free return of r. Now the agents’
problem becomes

min
h

1

2
h′Σh,

subject to
µ′h+ (1− ι′h)r = µh.
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The Lagrangian is

L =
1

2
h′Σh+ λ(µh − µ′h− (1− ι′h)r).

The first-order conditions are

Σh = λ(µ− rι)

µ′h+ (1− ι′h)r = µh.

Solving this set of equations, we obtain

h =
µh − r

(µ− rι)′Σ−1(µ− rι)
· Σ−1(µ− rι). (A.6)

Note that this portfolio equals a scalar that depends on µh times a vector that
does not depend on µh. In other words, for all expected return, the exactly same
proportion of each risky assets are chosen. We normalize Σ−1(µ− rι) to obtain the
so-called tangency portfolio,

hm =
Σ−1(µ− rι)

ι′Σ−1(µ− rι)
.

The normalization makes the elements in hm adding up to one. In the idealized
world of CAPM, therefore, everyone will choose the tangency portfolio. Individuals
differ only in the percentage of cash holding or leverage. In equilibrium, the market
portfolio must be the tangency portfolio.

Let Rm be the market return. The variance of the market return is given by

var(Rm) = h′
mΣhm =

(µ− rι)′Σ−1(µ− rι)

(ι′Σ−1(µ− rι))2
.

The expected market premium over the risk-free return,

ERm − r = h′
mµ− r =

(µ− rι)′Σ−1(µ− rι)

ι′Σ−1(µ− rι)
.

Let Ri be the i-th asset. We have ERi = e′iµ and

cov(Ri, Rm) = e′iΣhm,

where ei is a vector that has 1 on the i-th element and 0 on others. Now we have

(ERm − r)
cov(Ri, Rm)

var(Rm)
= e′i(µ− rι) = ERi − r.
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Rearranging terms, we obtain the celebrated CAPM model,

ERi = r + βi(ERm − r), (A.7)

where

βi =
cov(Ri, Rm)

var(Rm)
. (A.8)

In the CAPM model, the expected payoff of a security is a linear function of the
security’s beta, which characterizes the systematic risk contained in the security.
The linear function is called the security market line (SML). Obviously, the intercept
of the SML is the risk-free rate (r) and the slope of the SML is the market risk
premium (ERm − r).
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