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May 2, 2010

Junhui Qian

1 Introduction

We discuss conditional mean models in this part of the course. We first introduce lin-

ear models (AR, MA, and ARMA), we explore their properties, and we discuss issues of

estimation and forecasting. At the end of this part, we also briefly discuss nonlinear models.

2 Linear Models

Consider a time series X = (Xt) and a filtration (Ft). In this section, we assume that

Et−1Xt ≡ E(Xt|Ft−1) is a linear function of the lags of X and innovations ε. If Et−1Xt =

c + α1Xt−1 + · · · + αpXt−p, X ∼ AR(p). If Et−1Xt = β1εt−1 + · · · + βqεt−q, X ∼ MA(q).

And if Et−1Xt = c + α1Xt−1 + · · ·+ αpXt−p + β1εt−1 + · · ·+ βqεt−q, X ∼ ARMA(p, q).

2.1 Autoregressive Processes

The simplest autoregressive model is the AR(1), the first-order autoregressive model. We

say X = (Xt) is a zero-mean AR(1) process if,

Xt = αXt−1 + εt, (1)

where |α| < 1 and (εt) is a w.n.

Suppose there is a positive deviation from the mean (ie, Xt−1 > 0) at time t − 1, then

Xt would be a fraction of the deviation (ie, αXt−1) plus a shock term (εt) representing new

information flowing in. As εt has a mean of zero, in average Xt would be closer to zero. It
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is as if some force is pulling (Xt − µ) back to zero. This property of AR(1) model is called

“mean-reversion”.

More generally, X ∼AR(p) if

Xt = α1Xt−1 + · · ·+ αpXt−p + εt, (2)

where the coefficients (α1, ..., αp) must satisfy that the roots of 1− a1z− · · · − apz
p = 0 are

all outside the unit circle. If p = 1, this means that |a1| < 1.

The ACF of AR process decays exponentially (short memory). And the PACF of AR

process is truncated.

2.2 Moving Average Processes

(Xt) is called a q-th order moving average process if Xt can be represented as

Xt = εt + β1εt−1 + · · ·+ βqεt−q = εt +
q∑

i=1

βiεt−i,

where (βi) are constants. We denote a q-th order moving average process as MA(q).

If we assume Eε2
t = σ2, then the variance of Xt would be

γX(0) = σ2

(
1 +

q∑

k=0

β2
k

)
.

For q = ∞, we have an MA(∞) process. In this case we require the coefficients (βk) to

be “square summable”, ie,
∑

k β2
k < ∞. To have a well defined long-run variance (hence

mean ergodicity), we further require “absolute summability”, ie,
∑

k |βk| < ∞. Absolute

summability implies square summability, but not vice versa.

To show that the MA(∞) representation with square-summable coefficients is well-

defined, we need to prove that
∑Tβk

k=0 εt−k converges in L2 to some random variable Xt as

T → ∞. It suffices to show that for any ε > 0, there exists a large N such that for any
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integer M > N

E

(
M∑

k=0

βkεt−k −
N∑

k=0

βkεt−k

)2

< ε.

This is the Cauchy criterion for L2 convergence. We have

E

(
M∑

k=0

βkεt−k −
N∑

k=0

βkεt−k

)2

= E

(
M∑

k=N+1

βkεt−k

)2

= σ2

(
M∑

k=0

β2
k −

N∑

k=0

β2
k

)
.

The conclusion then follows from the square summmability condition
∑

k β2
k < ∞.

To that absolute summability implies mean ergodicity, we note that

∞∑

j=0

|γj | = σ2
∞∑

j=0

|
∞∑

k=0

βj+kβk|

≤ σ2
∞∑

j=0

∞∑

k=0

|βj+kβk|

= σ2
∞∑

k=0

|βk|
∞∑

j=0

|βj+k|.

2.2.1 Invertibility

For an MA(q) process, if the roots of β(z) = 1 + β1z + · · · + βqz
q = 0 are all outside the

unit circle, then the MA(q) process is “invertible” and is equivalent to an AR(∞) process.

For example, consider a zero-mean MA(1) process, Xt = εt + βεt−1. We my write the

model as

Xt = (1 + βL)εt.

If |β| < 1, we may multiply both sides by (1 + βL)−1 and obtain

(1− βL + β2L2 − · · · )Xt = εt,
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which is in AR(∞) form.

We may also represent an AR process in MA(∞) form. For example, consider an AR(1)

model, (1− αL)Xt = εt. We may multiply both sides by (1− αL)−1 and obtain

Xt = (1 + αL + αL2 + · · · )εt,

which is an invertible MA(∞).

The ACF of MA process is truncated. And the PACF of AR process declines exponen-

tially.

2.3 ARMA Processes

Combine the AR(p) and the MA(p) models, we obtain the celebrated ARMA(p, q) model.

Without loss of generality, we consider a zero-mean process X = (Xt). We say that X ∼
ARMA(p, q) if X satisfies,

Xt − α1Xt−1 − · · · − αpXt−p = εt + β1εt−1 + · · ·+ βqεt−q. (3)

Using the lag operator L, the above may be written as

α(L)Xt = β(L)εt,

where α(z) = 1 − α1z − · · · − αpz
p and β(z) = 1 + β1z + · · · + βqz

q. For an ARMA(p, q)

process to be stationary, we must have that all roots of α(z) = 0 are outside the unit circle.

In this case, the ARMA process may be written in MA form,

Xt =
β(L)
α(L)

εt =
∞∑

i=0

φiεt−i,

where the coefficients (φi) may be obtained using “polynomial long division” of β(z)/α(z).

For obvious reasons, φi is called the impulse response function.
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2.4 The Autocovariance-Generating Function

We define autocovariance-generating function for a covariance-stationary process X as

gX(z) =
∞∑

k=−∞
γX(k)zk.

When z = e−iω, where ω is the radian angle, then s(ω) = gX(e−iω) gives the spectrum of

X.

For MA(1) process,

gX(z) = σ2(1 + βz)(1 + βz−1).

For AR(1) process,

gX(z) =
σ2

(1− φz)(1− φz−1)
.

2.5 Linear Processes

ARMA processes belong to the class of linear process, which is of the following form,

Xt =
∞∑

k=−∞
ϕkεt−k.

The study of linear processes is justified by the celebrated Wold’s Decomposition Theorem,

which states that any zero-mean weak stationary process (Xt) can be represented as

Xt =
∞∑

k=0

ϕkεt−k + dt,

where (εt) is white noise, φ0 = 0,
∑∞

k=0 ϕ2
k < ∞, and dt is perfectly predictable by

(Xt−1, Xt−2, ...). The Wold’s theorem is reassuring to practitioners of ARMA models in

that although the data generating process may not be ARMA, we may fit the data with an

ARMA model nonetheless, which would adequately describe the correlations in data, albeit

not optimally.
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The sequence (ϕk) is called a filter. And a linear process can be further transformed

by a linear filter. The following results give conditions under which the transformation is

meaningful.

Results: Let {ϕk} be sequence of numbers that are absolutely summable, ie,
∑∞

k=−∞ |ϕk| <
∞, and let {ξt} be an arbitrary time series, then we have:

(a) If supt E|ξt| < ∞, then
∑

k ϕkξt−k converges almost surely and in mean (L1).

(b) If supt E|ξt|2 < ∞, then
∑

k ϕkξt−k converges in L2.

(c) If (ξt) is stationary, then so is Xt =
∑

k ϕkξt−k.

3 Estimation

We may use OLS or Method of Moments (Yule-Walker) to estimate the AR coefficients in

AR and ARMA models. However, MLE is most often used, especially for models with MA

components.

3.1 Gaussian Error

We assume that εt ∼ i.i.d. N(0, σ2). The joint likelihood function of X ∼ ARMA(p, q) is

given by

p(θ|X1, X2, ..., XT ) = p(X1, X2, ..., XT ) = p(X1)p(X2|X1)p(X3|X1, X2) · · · p(XT |X1, ..., XT−1),

(4)

where θ is the parameter vector θ = (c, (αi, i = 1, ..., p), (βi, i = 1, ..., q), σ2)′.

The conditional distribution Xt|(X1, ..., Xt−1) is normal with mean c + α1Xt−1 + · · ·+
αpXt−p + β1εt−1 + · · ·+ βqεt−q and variance σ2.

εt is not observable, but can be calculated given parameters and starting values of X

and ε. We have εt = α(L)Xt − c− β1εt−1 − · · · − βqεt−q. We may choose the initial values
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for X, ie, (X0, X−1, ..., X1−p), to be the sample mean of X; and we may simply set the

initial values of ε to be zero. As T → ∞, the choice of initial values plays an insignificant

role. For the same reason, we may delete p(X1) from (4). It is in this sense that we should

call the above estimation procedure as conditional MLE. Unconditional MLE for ARMA

models is more involved and will be covered later in the course.

3.2 Non-Gaussian Error

If the assumption that εt ∼ N(0, σ2) does not hold, we may still pretend that it does and use

the above strategy to estimate the parameters. An estimator that maximizes a misspecified

likelihood function is called a “quasi-maximum likelihood estimator”. QMLE often gives

consistent estimates of the model parameters. However, if the residuals are not Gaussian,

standard errors that are calculated under the Gaussian assumption are incorrect in general.

For more details on QMLE, we refer to Heyde (1997).

For a positive process, we may use the following transformation to produce a Gaussian-

like process,

Xλ
t =





Xλ
t −1
λ for λ 6= 0,

log(Xt) for λ = 0.

This transformation is due to Box and Cox (1964). The parameter λ may be estimated

along with other parameters associated with the process.

4 Diagnostics

After estimating a model, it is necessary to check whether the model is valid, in the sense

that whether the model adequately captures the correlations in data. For linear models

we have introduced so far, the model diagnostics boils down to checking the white noise

assumption of the error εt. In the minimum, the estimated residuals should display no serial
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correlation. Formally, we test the following hypothesis,

H0 : ρk = 0 ∀k, H1 : otherwise.

In practice, we may employ portmanteau tests, the most famous of which is the Ljung-Box

test. The test statistic is

Q = T (T + 2)
m∑

k=1

ρ̂2
k

T − k
,

where m is commonly chosen to be some integer around log(T ). The statistic is asymptot-

ically distributed as χ2
m.

If Gaussian error is assumed, we also need to check it.

5 Prediction

5.1 Principle

Given past information, we usually rely on estimating conditional expectation to give a

prediction. It turns out that conditional expectation is a predictor that gives the least

mean squared error.

Consider the problem of predicting Yt+1 given Xt, where Xt may be a vector that

contains past observations of Y . The conditional expectation E(Yt+1|Xt) solves the following

minimization problem,

min
Ŷt+1|t

(
Yt+1 − Ŷt+1|t

)2
.

The quantity to be minimized can be called a quadratic loss function.

To see this, we consider an arbitrary predictor Ŷt+1|t = g(Xt), where g is an arbitrary

nonlinear function. It is straightforward to show that the MSE for this predictor satisfies

E[Yt+1 − g(Xt)]2 = E[Yt+1 − E(Yt+1|Xt)]2 + E[E(Yt+1|Xt)− g(Xt)]2.
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It is now clear that, to have a minimal MSE, g(Xt) = E(Yt+1|Xt).

5.2 Practice

To illustrate how prediction is done in practice, we discuss a simple case. Suppose the data

generating process is ARMA(1,1),

Xt = aXt−1 + εt + bεt−1, t = 1, . . . , T,

where εt ∼ i.i.d. with var(εt) = σ2. Let â and b̂ be consistent parameter estimates, and

let ε̂t be estimated residuals. The one-step-ahead forecast would estimate the following

conditional mean,

E(XT+1|XT , . . . , X1) = aXT + bεT .

Obviously, the desired forecast is

X̂T+1 = âXT + b̂ε̂T .

Assume that T is large, the forecast error may be approximated by εT+1. Hence the variance

of forecast error is simply σ2. If we further assume Gaussian error, we may construct interval

forecast. The two-step-ahead forecast would estimate

E(XT+2|XT , . . . , X1) = aE(XT+1|XT , . . . , X1).

The desired forecast is thus

X̂T+2 = âX̂T+1.

Assume T is large, the forecast error may be approximated by εT+2 + (a + b)εT+1. Hence

the variance of forecast error is simply
(
1 + (a + b)2

)
σ2.
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6 Nonlinear Models

6.1 Threshold AR

First consider a simple TAR(1) model:

Xt =





a1Xt−1 + εt, if Xt−1 < 0

a2Xt−1 + εt, if Xt−1 ≥ 0,

where a1 < 1, a2 < 1, and a1a2 < 1. TAR can be viewed as a regime switching model. Here

in this example we have two regimes, and the entry and exit of regimes are determined by

an observable signal which is Xt−1.

This model captures asymmetries in the dynamics of time series. For example, if a1 =

−1.5 and a2 = 0.5, then there are one regime that tend to reverse forcefully and another

one that tend to stay.

The sufficient and necessary condition for Xt to be ergodic is that

a1 < 1, a2 < 1, and a1a2 < 1.

The TAR(1) model can be extended in several directions. We may increase the number

of regimes and lags, and we may choose other trigger signal than Xt−1.

6.2 Smooth-Transition AR

The entry and the exit of regimes in TAR models are sudden. Sometimes it is more rea-

sonable to assume gradual transitions into other regimes. Consider the following smooth-

transition AR (STAR) model,

Xt = c1 + a1Xt−1 + F

(
Xt−1 − `

s

)
(c2 + a2Xt−1) + εt,



11

where F is a cumulative distribution function. The typical choices of F include logistic

function (F (x) = 1/(1 + exp(−x))) and cdf of N(0, 1).

It is clear that as Xt−1 → −∞, we have

Xt = c1 + a2Xt−1 + εt.

And as Xt−1 →∞, we have

Xt = (c1 + c2) + (a1 + a2)Xt−1 + εt.

In both TAR and STAR, regime switching is based on observable signal. At any time

point, we are sure about the current and past regimes. In markov switching AR (MSAR)

models, only an unobservable probability law of the regimes is assumed. We will discuss

MSAR later in the course.

6.3 Estimation and Forecasting

MLE is the usual choice for estimating nonlinear models. Given a model like TAR or STAR,

it is not difficult to write down its likelihood function. However, it is much more difficult

to make forecasts based on an estimated nonlinear model. It is difficult to obtain explicit

forms of E(XT+`|XT , . . . , X1), which is essential for the usual ARMA-based forecasting. It

is thus common to use bootstrap to make forecasts. We may do the following:

(1) Draw with replacement εT+1, . . . , εT+` from (ε̂t).

(2) Compute X̂
(i)
T+1, . . . , X̂

(i)
T+` recursively.

(3) Repeat (1) and (2) and obtain B realizations of X̂
(i)
T+`.

(4) The point forecast would be B−1
∑B

i=1 X̂
(i)
T+`. Forecasts of intervals and distribution

can also be made.
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