Supplementary Material for

“Panel Data Models with Interactive Fixed Effects
and Multiple Structural Breaks”

This supplemental document provides the proofs of all the technical lemmas in Appendix B

of the main document.

C Proofs of the technical lemmas

In this appendix we give the detailed proofs of the technical lemmas used in Appendix B. Before
proving Lemma B.1 on the convergence rates of Bt, we give some preliminary results. Let
b = (b),0,...,b,)" where b; is a p-dimensional column vector and let C' be a positive constant

whose value may change from line to line. Recall that dyr = min(\/]v , \/T ).

Lemma C.1 Suppose that Assumption 1 in Appendiz A holds. Then we have
(i) supy supa | gp S0 0 XIM aee| = Op(pN~4/2 + pH2T-1/2),
(i1) supa |7 Lty SOAYMaz| = Op(o3h),
(iii) SUPA ’NT Zt 1 EtPAEt‘ = OP(5]_VT)

(w) ~NT Zt 15tPA°5t Op(N ):
where supy, is taken with respect to b such that ||b|| < C(pT)

to A such that +A'A = Ip,.

12 4nd sup A 1S taken with respect

Proof of Lemma C.1. (i) Note that = U XIMpe; = ~+ I b Xle— T I UL XIAAN g
if %A A = Ip,. By Assumption 1(iii) and the Cauchy-Schwarz inequality, we have

T T T
1S v xe = (S I6e?) - (Y IXied?)Y? = 0p (bTNY?) (C.1)
t=1 t=1 t=1

for [|B))2 = S°E, ||b¢]|> < CpT. On the other hand, by some elementary calculations, we have
T

T
};nggzm’et} < ;‘b’X{AA’et}<112&aéxT |X;AHZHthHA’etH

\XéAH(ZHth )’ (;uwefu?)”

IN



By the restriction on A and Assumption 1(ii), we have
2 2
max HXtAH = max tr (A'X;X/A) < A max (X{X:) |Al" = Op(N?). (C.2)

1<t<T 1<t<T

On the other hand, using %A’ A = Ip, and Assumption 1(iii), we have

T
/ 2 ! _ !
. =
ZHA&H ZTr ‘eiet ) = Tr(A'ee’A)
t=1

< N |ys\|sp Tr(A’A/N) = NRy ||e|Z, = Op (N(N + T)). (C.3)

It follows that .
1> BX[AN | = Op(p'*(N°T'? + N*T)), (C.4)

t=1

as ||b|| < C(pT)*2. Then, by (C.1) and (C.4), we can complete the proof of (i).
(ii) By the definition of M s and noting that %A'A = IR,, we have

T T
1 07 A O7 _ 1 s 0/ 07 A O7 !
—NT;ftA MAat—NTtX_;ftA N2TthA AANe

By Assumptions 1(i) and (iii), we readily have

T T T
> A% = (3D IRIP) - (3 IAY=]?) = 0p(VAT). (C.5)
t=1 t=1 t=1
On the other hand, as in the proof of (C.4) above we can show
T
1> FH'AYAN e = Op(N*TV? + N*2T). (C.6)
t=1

We then complete the proof of (ii) by using (C.5) and (C.6).
(iii) As £A'A = I, we have 3= S P = T ST el AA's, which together with
(C.3), completes the proof of (iii).
. . : P . :
(iv) Using Assumption 1(iii) and the fact +A”A% — ¥, under Assumption 1(i), we have

T
1
‘W Zg;‘/PA“t’ = NH( AYA O) H NT Z A%
t=1
= Op(N™1)-Op(1)-Op(1 ) =Op(N7Y), (C.7)
which completes the proof of (iv).
We has thus completed the proof of Lemma C.1. |



Lemma C.2 Suppose that Assumption 1 in Appendiz A holds and pN /2 4 pt/2T7-1/2 — o(1).
Let B = (6/1, ,ﬂ,T)’ and A = ()\,1, ,)\/N)' be the preliminary estimates of B° and A° which
minimize QNT(B, A), the first term of the objective function defined in (2.4). Then

T

1 .

= D18 = 817 = Op (PN V2 4 p!2T712) = 0p(1).
t=1

Proof of Lemma C.2. The proof of this lemma is similar to that of Theorem 3.1 in Appendix

B of the main document. Notice that

NTt Bt? (CS)

IIMH

T
QNT /67 E[ Xtﬁt) MA(Y;: Xtﬁt ] =

and
- Xt/Bt = Xt(ﬁ? - /Bt) + Aofto + &t (C.9)

Then, by (C.8) and (C.9) and using the fact that M ,0A? = 0, we have
QNT(B, A) — Qnr(8°,A)
- T Z [ — Xo8,) M 4 (Yy = XoBy) — (Y — Xo87) M po (Vi — Xtﬁ?)}

T
1 1r1,. . .
A Z N {(57& — B XM 3 X (B, — B8Y) — 2(8, — BY) X, M 4 A° £ + f?/AO'MAAOf?}
=1
1.1 o / /
+5 ZN[— ﬁt) XiM e +2f"A MAst—etPAst—i-etPAoet}. (C.10)

t=1
By Lemma C.1 above, we can prove that

T
1 .
— Z [—Q(Bt—B?)’X{MAat+2fE'AO'MA5t—EQPAet—ke;PAoat} = Op(pN~Y24pt/271/2),

NT P

(C.11)
Let ds = B — B° and dy = ﬁvec(M AA") where vec(-) denotes the vectorization of a

matrix. Define
. 1 .
A = —diag(X{M-Xl,... XrM ;i Xr), B=(F'F°) @Iy, and

C = Nl/Q[fl QM ; Xl,...,f%@)MAXT],



where ® denotes the Kronecker product. It is easy to verify that

1

T
; ! </ . 1., ..
T 2 (B = B) XM X0, — ) = 7 dAds,

t=1

T
1 : 1 i 1., ..
NT Z_l (e = B XiMAA'S? = 7 Zt_l T{MGA S (B, - B7)'X{ M | = =d\ Cds,

and

T T
1 1 1
7 D IVAYMAAY = = S T (MA S FAYM ) = 2 d\ B,
=1 t=1

where we have used the following fact on matrix calculation that Tr (A1A2A3) = vec (Al) (Ag ®
I)vec(As) and that Tr(A;A2A3A,) = ved’ (A1) (A ® Al)vec(Aj) with k being the size of

the column vectors in Az (in the first equation). With the above notations, we may show that
1 1
. , . . ,
>~ [(B = BY) XiM X (B~ BY) = 2(B, - BY) XiMAA S + J AV M A f7|
(dsAds —2d,Cds + dyBdy) = («'fﬂbdﬁ +d.Bd,),

where D = A — ¢'BYC and d, = dy — B+Cd5. By Assumption 1(i), we may show that
the minimum eigenvalue of %B is bounded away from zero w.p.a.l, i.e., there exists a positive
constant ¢4 such that g, (B/T) > ¢4 w.p.a.l. Using a decomposition similar to (B.8) in
Appendix B, we can readily show that umaX(C/C/T ) = op(1). By Assumption 1(ii), we can
also show that the minimum eigenvalue of A is bounded away from zero w.p.a.1, i.e., there exists
a positive constant ¢, (defined in Assumption 1(ii)) such that g, (A) > ¢, w.p.a.l. Hence, we
have proved that the matrix D is asymptotically positive definite as its minimum eigenvalue is
positive and bounded away from zero w.p.a.l.
Note that

%(dﬁDdg +d,Bd.) + Op(pN ™2 + p2171/%) < Qur(B,A) — Qur (8%, A%) <0, (C.12)

J Bd, is asymptotically nonnegative, and d, Ddg > cs||ds|> where cs is a positive constant. Tt
follows that &||ds||2 = = 3/_, |6, — BY|? = Op(pN~—1/2 4 p!/2T=1/2) = 0p(1), completing the
proof of Lemma C.2. [ |

Lemma C.3 Suppose that Assumption 1 in Appendiz A holds and pN—1/2 4 pl/27-1/2 = o(1).
Let H=Hyr = (+FYF") (%AO’A) V;T, where Vi is analogously defined as V yr in (2.7)
with B, replaced by B;. Denote fyp = %Zle 18, — BY||2. Then we have
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(i) L||A = A°H||* = Op (632 + iinT),

(i1) 3 (A — APH)'AH = Op (537 + i)

(iii) (A = A°H)'A = Op (535 +7y7),

(iv) = (A'A — H'AYAYH) = Op (532 +742),

(v) |Ps = Ppogr|| = OP(5 2T+771/2)

(vi) ﬁ Zs:l(A — AOH) EsYs = Op(5 2T —1—771/ ) with v, =1 or f2, and
(vii) 37 Soay [I(A = AYH) &2 = Op ((1+ NTH (03 + finr)).

Proof of Lemma C.3. (i) By (2.7) and (C.9) and letting d; = 3, — 37, we have

AVig - AH Vg
T

1 . . . . .
= {ﬁ Z (Y — X4B,) (Ve — Xtﬁt)} A—A’HVyr
t=1
1 o , -
= {ﬁ Z [ - Xtdt + Aofto + Et] [ - Xtdt + Aofto + Et]/}A - AOH VNT
t=1

T T T T
. 1 . 1 . 1 .

_ X "X'A — 0/ AOTA I'A QO 0 X! A

- NT Zt_l N s Zt_l Xede e ATA = Zt_l X = Z JrdiX,

[y

T T T
. 1 ; 1
§ : 0,0 2 : a'd } : 07 A 07 A }:

8
> Nt (C.13)
j=1

Noting that Tr (AB) < Tr(A) Tr(B) for conformable positive semidefinite matrices A and
B, |A|| = Op(N'/?) and maxj<i<r pi2,5, (X/X;/N) = Op (1) by Assumption 1(ii), we have

1

T T
« o/
72 DO Tr(Xedidi X{AA X ododl X))

t=1 s=1

2
< HAHQ{%XT:Tr(Xtdtd;Xt} —HAH {NTZd’XtXtdt}
t=1

Nl

2

IN

T
4] | e (XtXt/NH%ZHdtHQ} 0N (C14)
t=1



Noting that Tr (AB) < Tr (AA")"2 Tr (BB')"/? for conformable matrices A and B, we have

T T
linral? = g D0 O Tr(Xadd S AV A A £04, X))
t=1 s=1
.12 r r
< AL pan 80 S O
10,112 L 1/2 ’
< ‘AH fa (AYA/N) ( Z (Te(f0d; X Xdy fO) ) >
= 2
12 0/ A0 / 1 d 0
< [A]] s A”20/) Lrgtaggpumax (/)| fgudtuuftu
= Op(N)Op(1 Z||dt|2 ZHft H p (NinT) s (C.15)
and analogously
1< .
linTal* = Op (N (TZHﬁt 5tH2>> = Op (NijnT) - (C.16)
t=1

Noting that S/, |le|> = Op(NT) by Assumption 1(iii) and max<i<7 fimay (XiXt/N) =
Op (1) by Assumption 1(ii), we can show that

lanTsl? = N2T2 ZZTr Xpdye! AN e ,d X! < HAH N2T2 ZZTr Xydyehesd X"

t=1 s=1
< HAH{ Z{Tr etthtXtdtet)}l/Q}z

T 2
1.2 1
< NT J—
< A | (000)| {T > udtn}
1 T
< 0p(M 7D lal’ 5 ZHdtH = Op (Nijyy) (C.17)
t=1

and analogously
N .
linTell> = Op (7 > 118 - 5?”2) = Op (Nijn7) - (C.18)
t=1

The analysis of the remaining three terms is similar to the proof of Theorem 1 in Bai and
Ng (2002) by switching the roles of f; and A;. For @75, using the fact that AYA% = Op(N),



|A| = Op(N'/2) and Assumptions 1(iii) and (iv), we can prove that

T T
linrs)?* = N21T2 >N Tr(AY AN S fYAY) N2T2 ZZTr( Vel AR s, Y AYAY)

t=1 s=1 t=1 s=1

1 T T N N .
_ o (W S5 S S e A O )
t=1 s=1 i=1 k=1
N N
_ o (—zzzmk\ S5 e O )
=1 k=1 t=1 s=1
. N N 12 [ N N 2\ 1/2
= Or |y (ZZHA H HW) ZZ cishs i o'
1=1 k=1 =1 k=1 || t=1 s=1
] N | T T 2\ 1/2
= Op | 2 [ 2D 20D cuenfY = Op(N/T), (C.19)
=1 k=1 || t=1 s=1
and
1 T T , 1 T T ,
liveal? = s > DT <gt FYAYAA'AC 35;) =T (AO’AA AVfO e, E’)
t=1 s=1 t=1 s=1
1 T
= Op (ﬁ flesedt?! > = Op(N/T). (C.20)

By the assumption that max;<; j<n E [H Z;le Zle €it€js€£€sH2} = O(N?T? + T?) in Assump-

tion 1(iii), we can similarly prove
linTsl? = Op(N/T). (C.21)
y (C.13)—(C.21), we can prove that
%HAVNT — A°HVr||® = 0p(632% + iint)- (C.22)

Premultiplying (C.13) by A/, and using the identification restriction on A: %A/A = Ig,,
(C.22) and Lemma C.2, we may show that

Ve — <%A/A0> <%F°’FO> <%A°’A> = op(1). (C.23)

Furthermore, applying (C.12) in the proof of Lemma C.2 and noting that the matrix B is

positive definite, we can show that

%AO’MAAO = %AO’AO - <%AO’A) (%A’M) = op(1),

7



which together with Assumption 1(i), implies that %A/AO is asymptotically invertible and thus
Vnr is also asymptotically invertible. We can then complete the proof of (i) by using this fact
and (C.22).

(ii) Observe that by (C.13)

8 8

1, + . . 1 %

N(A — A’H)'A°H = § Vit A°H = ¥ > i (C.24)
7=1 7=1

By Assumption 1(i) and (C.14), we can readily prove
L.
il < (577

Analogously, by (C.15) and (C.16), we can prove that

fiweall ) 1¥iel - (iaIAHT) = OpGiar). (©29)

1., .1/2 L. 1/2
Slhidvrall = Op (7)) and <kl = O (37)- (C.26)

For 44 4, by the definition of 1n7 3, we have

—UNT3 = _V;Ta/NTQAOH = VNT ZA erd; X]AH

NT

_ 0r U 0 0 ! v/ A O T
— NTVNTtZIHA erd, XA H—i—ﬁVNTtZl (A — A°H) e,d, X]A°H

UNT 30 T UNT 30 (C.27)

By the Cauchy-Schwarz inequality and Assumptions 1(ii) and (iii), we have

o L 1/2 s 1/2
likrsall < = D IIA%d;]| < € (T 3 ||A0’€t||2) (T > HdtIP) = Op ((Niyr)'2).
t=1 t=1 t=1

(C.28)
Similarly, with the help of Lemma C.3(i), we can also prove that
1/2
ksl = Op (Nl + Noghi7) (C.29)
y (C.27)—(C.29), we have
I . 1/2
Slisral = Op (e + 034iNE) (C.30)
Similarly, we can also show that
1/2
HUNTGH =0p (77NT + 5NT77]\?T> (C.31)

8



For 415, by the definition of 475, we have

iNts = N VNT;H AV ' AV AH + —— NT VNT; (A - A°H) e, fYAYA°H
= UNTs0 T UNT S (C.32)

By Assumptions 1(i) and (iii), we have
T
1 1
[ihr sall < CfH STAY )| = OP(fHAO’eFOH) — Op <N1/2T*1/2> . (C.33)
t=1

Using Lemma C.3(i), we can also prove that
N5l = Op (Nijnr + Noys) - (C.34)
By (C.32)—(C.34), we have
L., . _
NHUNTﬁH = Op (N7 + 5N2T) . (C.35)

Noting that AN = Op(N) and using the assumption E[HAOIEFOH2] = O(NT) in Assumption

1(iii), we can also show that

1 .. . _ 1, .. . _
NHUNTJH =Op (77NT + 5N2T) and NHUNT,SH =Op (77NT + 5N2T) . (C.36)

By (C.24)—(C.26), (C.30), (C.31), (C.35) and (C.36), we can complete the proof of (ii).

(iii) and (iv) The proofs of (iii) and (iv) can be completed by using the results in Lemmas
C.3(i) and (ii).

(v) Note that

P —Prop=AAA)A — A°H(HAYA’H) " H'AY = ZUNTJ, (C.37)

where

(A — A°H) (H'AYAH)" (A - A°H)’,

int2 = (A—-AH)(H AO’AOH) TH'AY,

ivrs = (A~ AH)[(N'A)" — (H'AAH) ¥ (A~ AR’
inra = (A~ AH)[(N'A)" — (H'A”A"H)TH'A”,
onrs = ACH(H AYA’H)™(A - A°H)',

ints = ACH[(A'A)" — (H'AYA°H)"](A - A°H),

intr = ACH[(A'A)" — (H'AYA°H)"JH'A”.

ONT,1 =

9



Using the results in Lemmas C.3(i) and (iv), we can prove (v).
(vi) The proof is analogous to that of part (ii) and thus omitted.
(vii) By Assumption 1(iii) and part (i),

T
L ._0./2_L A A0 A AT
NT;H(A ACH)ey|? = NTTr((A A°H)'ee/(A - A°H))
o o« /. .
< el Tr((A - A%ED (A - A%D))
= Op((L+NT (635 +iinr)-
We have thus completed the proof of Lemma C.3. |

With the above three lemmas, we are ready to give the proof of Lemma B.1.

Proof of Lemma B.1. Let Qn7.(8;, A) be defined as in (C.8), 3 and A be defined in Lemma
C.2, and H be defined in Lemma C.3. Note that

. . . . + . . +
— XiBy = Xu(B] = B) + AH " [P + (A" = AH ") f) + & (C.38)
The preliminary estimate 3, which minimizes Q NT.t(Bg, A) (with respect to ;) satisfies that

L xum, A(A°—AHE )P, (C.39)

(iXéMAXt)(ﬁ ﬁt) X M jer + — N

N

as M AA = 0, where 0 is a null matrix or vector whose size may change from line to line.

We first consider the term + X/M ;&;. Notice that

1 1 1
~ XM jer = XM poer + NX{(MA — M po)et. (C.40)

By the definition of M 40, we have

ixggt — lX,{A(’(AO’AO)mO'gt. (C.41)

1
Xt,MAOEt - N N

N
By Assumption 1(iii), we can show that for each 1 <t < T

L | Xtedl = Op (p/2N12). (C.42)
N t

By Assumptions 1(i)—(iii), we can show that for each 1 <¢ < T

1 +
XA = Op (V). A% = 0p(N%) and (A”A?) L =1,

N

which imply that
1
SIXIACAYA) A = Op (N_1/2) . (C.43)

10



Thus, by (C.41)—(C.43), we have
1
S IXIM yoe || = Op (p1/2N_1/2> . (C.44)

To derive the order of X/ (MA — MAo)at, we need to investigate the term M ; — M po. By
(C.37), we have

7
~(Mj — M po) = A(AA)TA — AH (H'AYAH)TH'AY =Y o, (C.45)
j=1
We next show that :
1 ) _
F1X (D owvrg)ed| = Op(057)- (C.46)
j=1

To save the space, we only consider the case of j = 5. Other cases can be studied similarly. For

X/ONT 56¢, note that
ints = AH(H'AYAH)" (A - AH)’,
— AYH(H'AYA°H) "V (AVr — APH V),
8
= AH(H'AYAH) Vs (Y anry) (C.47)
j=1
where an7j, j =1, ..., 8, are defined in the proof of Lemma C.3(i) above. By the fact that both

H and V7 are asymptotically invertible and similar to the proof of Lemma C.3(i), we readily

prove that
5 /
1 . . o\ .
< | XIAYH (H'AYAH) " Vi (Y ivry + s | o] = O (035 + 03biN7) - (C.48)

j=1
Meanwhile, by Assumptions 1(i)(ii) and noting that
T T
max E[Z‘a;a,ﬂ = max E[ O(N? + NT)

1<t<T 1<t<T
s=1 S:1

by Assumption 1(iv), we can prove that
1 . e . .
< HX{AOH(H/AO’AOH)“LV}TQQVT’G&H

T /!
1 OFT (FT AV AOFTY T v T 1 Z ;
= N Xz‘{A H(HA’A H) VNT (W S:1€5d;XgA) Et

T
- P <N2T -




and

T

1 .
Z A,Xsdseéet
s=1

N2T

IN

. , 1/2 . 1/2
N71/2 (— s ) : (ﬁ Z H6/35tH2)
S= s=1

) T 1/2
Op | oxtr (;ZIIdsHZ) :

s=1

which together with Lemma C.2, indicate that

1 . . . .
< HX{AOH(H’AU’AUH)+ VETﬂQVT,eetH = Op (5NT77}V/§) (C.49)
Similarly, we can also show that
1 . . . .
= HXt’AOH (F'AYAYE) TV iy e H
/
- L X/AH (H'AYA’H) "V, iie FYAYA | g = ! Ocle
N ||t NEA\NT &% ! I NT !
LT , 1/2 L , 1/2
= Op(N7'?) (;ZH}“SH ) ‘ (ﬁZHE’s&H ) = Op (6y7) - (C.50)
s=1 s=1

Then, by (C.48)—(C.50) and using the fact that 7y = op(1) in Lemma C.2, we can readily
prove that
1 . _
& [ Xionrsed| = O (957) - (C.51)
Then we complete the proof of (C.46), which implies that
1 _
L x5~ M po)ed] = Op (555). )

We next consider the term %X{M i (AO —AH +) f?. Note that

1 0 Agrtyeo 1L 0 Aprtye0, L 0 Aryh) -0
NX,{MA(A —AH ") f, :NX,;MAOH(A —AH ") f, +NXQ(MA—MAOH)(A —AH ") f;.

(C.53)
Applying Lemmas C.3(i) and (v), we can find that +X/M sz (A — AH )fto is the leading

term, which will be the major focus in the following proof. Note that

A~ AH" = (AH Vr — AVar) VipH.
We can apply the decomposition (C.13) for A°’H V y7— AV yr, use the fact that MAOHAOH =
0 and both H and V7 are asymptotically invertible, and then obtain

3 8
1 . : et
XiM pogy | Y vy + > iney | VerH' fP. (C.54)

Xt o (A0 — AH ) f0 = =%
j=1 j=6

N

12



Similar to the proof of Lemma C.3(i) and using the decomposition A = (A—AOH )+ A’H, we

may prove that

8

1 . . . e boet _ .

~ || XIM yogy | inra +inrs + Y vty | VerH' f2| = Op (S5 + iinr)- (C.55)
j=6

Meanwhile, letting x ; = f¥ (%FO' FO)+ f?, we may also obtain

T
1 . . 4 et 1 Lt et
—ngM ANt VrH ' ff = T ngM Ao Xsds fOAYAV  H ' ff
s=1
1 T
= =7 > XIM jo gy XX srds- (C.56)
s=1
Note that
1
NXéMAXt(ﬁ B39) K = XIM o g Xedy, (C.57)

where a X b denotes a = b(1+op(1)). By (C.39), (C.44), and (C.52)—(C.57), we have

1

T
1 _ _ .
NX{MAOHXtdt - N7 > " XIM jo g Xoxds|| = Op <p1/2N 12 =12 4 nNT> . (C.58)
s=1

Let Lyt = diag{%X{MAoHXl,. 7NX M yop XT} and Lyr. be the T x T block matrix
with the (¢, s) block being 55X/ M 5oz XsX - By (C.58), we may show that

(Lnt — Lyts)ds = R, (C.59)
where dg is defined in the proof of Lemma C.2, Ry7r = (R}, ..., R})" with

|Rell = Op (p/2N 72+ T2 4 i) and —ZHRtn? Op (PN 1+ T4 +ify)

Using the arguments as used in the proofs of Theorem 3.1 and Lemma C.2, we can prove that
L7 — LT, is asymptotically positive definite with the smallest eigenvalue bounded away from
zero. Hence, (C.59) indicates that

1 .
—ldall?
Fldsl* =

H |

T
Z 18, — B> = 0p (WN " + T~ +7%1) (C.60)

which, in conjunction with the definition of 79y, in the statement of Lemma C.3, implies that

ol ds||> = Op (PN~ +T71), and strengthens the consistency result in Lemma C.2. By the fact

13



that the matrix +X/M yo0pX; is positive definite as well as (C.58) and (C.60), we can prove
that

|00 () <00 )

for each t, completing the proof of Lemma B.1 in Appendix B. [ ]

Proof of Lemma B.2. (i) Using the argument in the proof of Lemma C.2 (with some mod-
ifications), we may prove that nyp = op(1). Then, following the proofs of (C.44) and (C.52)

above, we can readily show that

T

1

27 D XM gz = Op(pN ! +1T71). (C.61)
t=1

Furthermore, by the Cauchy-Schwarz inequality, we have

1/2
7 N = 0pl i) (13- #]) =0 skt com

(i) As A”M 40 = 0, we have >/_, fYAYM je; = S0, fYAY (M 4 — M p0)et. Similar to

the decomposition in (C.37), we have

7
Pi— Py =ARA)TA — A°H(H'AYAH) "H'AY = onry, (C.63)
j=1
where H = Hyr = (%FO'FO) (%AO’JAX) Vi, Var is defined in (2.7), and vnrj, 5 = 1,...,7,
are analogously defined as 9n7; in the proof of Lemma C.3(v) with A and H replaced by f\
and H, respectively. We only need to show that

Z FYAY (M 4 — M po)e
t=1

Z f?l—’\o’ ZUNTJ =0Op (5]_\,2T + 5]jNT %%) (C.64)

When (A, H) is replaced by (A, H), it is easy to verify that the convergence results in
Lemma C.3 still hold with 7y replaced by ny7. By Assumption 1(iii),

T

or 0
E Aefy
t=1

which together with Lemma C.3 (with some modifications to allow the replacement of 7y, A,

= Op(VNT), (C.65)

and H by nyT, A, and H, respectively) indicates that

T

1
= D> fYAY (unr2 + vNTa + T €

= Op((NT) V2832 + 7)) (C.66)
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On the other hand, note that

!/

T 8
=D (Do unry | eff|| (C.67)
t=1

T
Z (AVNT - AOH VNT),&ftO
t=1

where unt;, j = 1,...,8, are defined similarly to @7, in the proof of Lemma C.3 (i) with Bt
and A replaced by Bt and A, respectively. Let dy = Bs — 62. Then, by the definition of uy7

and using Assumptions 1(i)—(iii), we can prove that

CZSCZ;ngth

T
LF2ID  I1ds |1 X e

T
Z
T
Z |
— Op (Nl/QTpl/ZnNT) , (C.68)

and

T T
— DN AN X e f?

t=1 s=1

T T
= Op(T™) Y IR sl £ X el
t=1 s=1

— Op(Nl/QT?pnNT)l/;). (C.69)

By analogous arguments, we can also show that

— Op(N'2Tyy2). (C.70)

On the other hand, using Lemma C.3 we can show that

T R
> uyrpe?|| = ~NT > Aed Xlef!
t=1 t=1 s=1
L lzr (AR
< 57 SN H Aje d X e ff + 57 ST (A - AH) e ud X e f?
t=1 s=1 t=1 s=1
Lz 1/2 ;T T 1/2
/ 2 ] ! 0
< |H] (ﬁ;HAo%H ) ﬁ; ds;Xsetft
T 2 , 2\ 1/2
A l 2 7 / 0
F(FrXaomei) ( §p 3|y
S= s=1 =

15



= O (Tnyr)'?) + Op ((1L+ NPT ) (03 + ny ) Tonn)?)

= Op (1 + NPT 255 + NPT Py T ()2 (C.71)
and analogously
d 1 | &
dounrserll|| = o |20 Do AefIAYeS]
t=1 t=1 s=1
T T
0/ A0/ 0 1 07 A O
< ZZHAOan A f =22 (A= AoH) ) es fO A, f7
s=1 t=1 s=1 t=1
T
1 o
< |Hl 57 IIAO’ FO|? + NT > (A= AoH) e f2|| || AYF°||
s=1
= Op(1) +Op (N1/2T1/2(5N?,,+ 1/2)). (C.72)

Using the fact that under Assumptions 1(i) and (iv)

T || T 2
E : / 0
6‘sgtft
=1 || t=1

T T T
< (Z > ||e;et1\|2> (Z ||f£2\|2> =0p (T°N(N+T)),  (C.73)
s=1t1=1 to=1
we have
T T T A
ZUINT,65tf? = Z Z 'Xodycler f?
t=1 —1 s=1

IA

) 1/2

= Op (n}v/i(NTl/Q + NI/QT)) : (C.74)

1 T 1/2 T
- 502
NT 1lglsa<XTHAX [ - (ZHdsH > (Zl ZE eff

= O0p(T7V)-Op (Tl/%}v/%) Op (TN1/2(N1/2+T1/2))

Notice that

T 1 T T ,
Y uvrsedf?| = NT Y Aceiaf
t=1 t=1 s=1
1 T T 1 T T
< &F SN TH Ajeele ff ~T DD (A - AoH) eclerf?
t=1 s=1 t=1 s=1

For the first term on the right hand side, by the Cauchy-Schwarz inequality and Assumption
1(iii) and (C.73) we may show that

1 T T 1 T 1/2 T T 1/2
7 [ 22D H Ajeseia | < WIIHH(ZHAB&HQ) -(Z!!Zegetf?\\2>
s=1

t=1 s=1 s=1 t=1
= OP((NT)*I/?)OP(TNU?(NI/2+T1/2)) :OP(<NT)1/2+T)
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For the second term on the right hand side, by Lemma C.3(vii) (with 77, A, and H replaced
by ny, f&, and H, respectively), we have

T T
ZZ A AOH ESE Etft

t=1 s=1

s=1 t=1

= O (W+ NPTV 5k +03(7)) Op (T + NV2T'2)

= 0p ((T+ NSk +133) -
It follows that

T
/ 0
E UNT,85tf t

Finally, noting that ‘ ZS 1 Zt L Ve e f? } = Op(NT) by Assumption 1(iv), we can also show
that

= Op ((NT)Y2 4+ T+ N7 . (C.75)

T
> uyrredf?|| = Op(N). (C.76)
t=1
By (C.67)—(C.76), we have
1 T
N !/ —_
= I>- (AVar — A"H Vi) e f?| = Op (63 + o A7) - (C.77)
t=1

With this, we readily prove that

1

T
~NT > HAY(onra + onrs + onTs + onTe)ed|| = Op (5]*\,2T + 5];}VT77%:,21> , (C.78)
=1

which together with (C.66), leads to (C.64). Hence, we complete the proof of (ii).
(iii) This follows from Lemmas C.1(iii) and (iv). [ |

Before proving Lemma B.3 in Appendix B, we need to introduce two technical lemmas.
The first lemma is similar to Lemma C.3 with the preliminary estimates replaced by the post-
LASSO estimates. Let A,,0 = A(Trgo) be the infeasible estimate of the factor loadings in the
post-LASSO estimation procedure, H = (1FYF%)(£AY A, ) Vg with Viyr defined in the
proof of Theorem 3.4 in Appendix B, and fjyr = =5 Z;n:f“l [| Qo —a?”2, where G0, is the

j-th p-dimensional element of the infeasible estimate @0 = é,,0(70,).

Lemma C.4 Suppose that the conditions in Theorem 8.4 hold. Then we have
. < =2 _ .
(i) %||Amo — A’H || = Op (057 + iint),

17
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(ii) % (Ao — AH)'AYH = Op (532 + i2),

(i) & (A — AVH) Ao = Op (35300 +73),

(iv) L (AoA o — H' AYAYH) = Op (632 + iix2)

(v) HPAmO ~ P rogll = 0r(0yr +7~7%§)

(vi) ﬁ Z;F:l([&mo — AOIEI)IES% OP(5]_VT + 771/2) with v, =1 or f2, and
(vii) R Yamy [[(Ago — A°H )| = Op (1 4+ NT1) (837 +fint))-

Proof of Lemma C.4. The proof is analogous to that of Lemma C.3. Hence, we only sketch
it. For notational simplicity, we let V = Vyr, and 7 M = Qo 9 ji=1,...m°+1. By (B.25)
in the proof of Theorem 3.4, we have

AoV —A'HV

1 mO+1 Tjo_l
- _ ; 0
J=l =17 |
[ 1 mP+1 Tjofl
~ ~ / ~ ~ ~
-~ |NT Z (_ij+Aoft0+€t)(—ij+Aoff+at) A, o—AHV
J=b =17
mo+1 T3 —1 mo4+1 T7-1 mos1 T9—1
S Y X XX R - Y Y X AR - g S Y XA
=T J=L =17, J=1 +=T9_,
mo41 T -1 | o T9-1
Z A%f0 X Amo —i— — ZAO 52Am0 - NT Z Z ngX A0
J=1 =17 | =119,
1 & 1 &
07 A O X )%
+ﬁ t_zlgtft A AmO + ﬁ t_ZIEtEtAmo
8
2Nt (C.79)
j=1

Then following the proof of Lemma C.3 with A and d; replaced by f&mo and 7);, respectively,

and using Assumption 3(ii), we can readily prove Lemma C.4(i). Note that

8
Z (C.80)

Then following the proof of Lemma C.3(ii) and using Lemma C.4(i), we readily prove Lemma

1 0 0
5 (Ao — AH)'AH =

I Moo
|||
2|H

C.4(ii). The results in (iii) and (iv) can be proved by combining Lemmas C.4(i) and (ii). Similar

18



o (C.37), we have the following decomposition:

7
Pi = Ppopg= Ao (Ao Aso) TAL0 — ACH (H'AYAPH) T H'AY =Y Gy, (C.81)
j=1
where

intg = (Ao — A°H)(H'AYA°H) (A0 — A°H),

int2 = (Ao — A°H)(H' AYA°H)"H'A”,

ints = (Ao — AYH)[(AL0An0)" — (H' AYA’H) Y| (A0 — A°H),

inta = (Ao — A°H)[(A)0A0)" — (H' AYA’H) | H'AY,

ints = AH (ﬁ/AO’AOﬂ) * (Ao — A°H)',
inre = AH[(A o) — (H'AYA°H) "] (A0 — A°H),
inry = AH[(ALo0A,0)" — (H'AYAH) | H'A”.

By (C.81) and Lemmas C.4(i) and (iv), we can prove (v). The proofs of (vi) and (vii) parallel
to those of Lemmas C.3(vi) and (vii). We have thus completed the proof of Lemma C.4. [ |

Lemma C.5 Suppose that the conditions in Theorem 8.4 hold. Then we have
N m0 _
(i) Nt = mo Z H | Qo — 0‘0”2 Op(ap?VT)
(ii) 2 (Ao —A° H) — H (LFVF°)" (NT S foel et> +0p (33 (m®) 12 || @0 — )
+Op<pNT>f0rt—1 ST,

(i) 7,77y S5 XIAH (HAYACH) " (A — AYH) 5 - S0 ) XIAO (AYA0)
200 N7, (1) t:T.O t mO ct t=T]°,1 H ( )

(FFUF)" (Fr 0 f0ter) | = Or (035 (m) 2 [ — a®l|)+0p (6,37 ) forj = 1....m°
+1,
(iv) NTZt 1 H( mo — A° H Vet fP H =0p (5;NT>

Proof of Lemma C.5. As the proof of the convergence rates for &,,o in (i) is similar to the
proof of Lemma B.1, we omit the details. Furthermore, the results in (iii) and (iv) can be easily
proved by using (ii). Hence we only focus on the proof of the result in (ii).

Note that for any t =1, ..., T,

. (Apo — A°H)'e, =

8
5 Vi (A V- AHV): Z (C.82)



by using (C.79) in the proof of Lemma C.4. By Lemma C.5(i), Assumptions 1(ii), (iii) and 3(ii),

and the Jensen inequality, we have

1 . m 041 T -1
NHV aQVT715tH = o7 Z Z AmOXSnknkX &t
k=1 s= TIS 1
0+1 71
= Op(N2T71) || Ao | max b2 (X2 > X Il 3 x|
s= T]? 1
— Op (p1/2N_1/277NT) — Op (5;7;%) . (C.83)

By Lemmas C.4(i) and C.5(i) and Assumptions 1(iii), (iv) and 3(ii), we can show that

—HV Uyt |
mO+1 TP—1 mO+1 TP-1
- Ty Z HAY 7 Xler+ > Y (Ao — AH) e Xles
k=1 s= TIS 1 k=1 s= TIS 1
mO+1 -1 mO+1 TP -1
= Op(N° TN | D Ml D IAYesl[ Xoee]l + 1 Amo = APHI D il D llesll|| Xiee|
k=1 s=TP_, k=1 s=Ty_,
_ —1( = \1/2 —1/2(5— 1/2 1/2
= Op (N Ypiiyr)/) + 0p NV + N7 pir) 2)
= Op (Nfl(PTNZN )1/2+5pNT> (C.84)

By Assumptions 1(i), (iii) and 3(ii), and Lemma C.5(i), we have

1 mO+1 T;?—l
g =+ ~/ ~
NV T4€t = N2TV Z Z AmOXs”l]k.fg/AO/ Et
k=1 s= TIS 1
mO+1 -1 N
= Op(N2T7N) - ST il | D0 AL XN D M|
k=1 s= Tk 1 =1
= O (03 (m) 2o — a7 ). (C.85)
Analogously, we can show that
~V itvpae = Op (33 (1) 20 — o). (C.56)
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By Assumptions 1(iii) and (iv), we can prove that

T !/
1 ~ 4+ . +
NV UQVT755t = NQT ZAO 0 , ) Et

S=

[y

!/

!/

esfIAYe, + Op (635 - (C.87)

T T
= N_V* > (Amo - A°H ) esfIN"e; + WV <Z H'Ae, fS’AO’st>
s=1 s=1
e 077\ - fOAO L1 A0 £0[[]| A0
_ N_v > (B0 = A°H) 00 + O | <5l D A% s |A% |
s=1 s=1

;LT
_ NQTV+22< mo — ACH

By Assumptions 1(ii), (iv) and Lemma C.5(i), we have

1 1 mo+1 Tl
<t -+ 7 .
NV u'NT765t = WV Z Z AmoXsnkE; Et
k=1 s= TIS 1
mO41 T,?—l N
_ _ ~ ~/
R B S TR I SV S W ENE
k=1 s=T0_, i=1
= 0p (53(m") 20 — 0)) (C.88)
By the definition of H and noting that V}T is diagonal, we have
1+ 1ot s 1 1 <
Va1 _ /A 0 _ 0/ 0 0./
NV uNT,’?gt = (NV AmoA > NTZ 3 Et] = <TF F ) ﬁ;fsésa‘l .
(C.89)
By the definition of 47 g and Assumption 3(iii),
1 + 4
X _ < 0 0
NV T8t = N2TV ;(Amo —A H) 555;5t+N2TV H ZA 'esele
1 e /s N/
= =V Z(Amo —AOH) eseler + Op (033). (C.90)
s=1

Combining the results in (C.82)—(C.90) yields

+ T
(B - AE)e, = H <%FO ) NTZ L NQTw; (Aps — AH)' e, fOA,
T
—i—ﬁ \'al z; <Amo - Aoﬂ)lssagst +Op (6;:])’\@)
-
+Op (5*1T m®) V2| &, 0 — aOH) . (C.91)
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By Assumptions 1(i) and (iv), the first term on the right hand side of (C.91) is Op(dy7); by As-
sumptions 1(iii) and Lemmas C.4(vi) and C.5(i) we can show the second term is Op(,, NTON);
by Assumptions 1(iii) and (iv) and Lemma C.4(vii) and , we can show the third and fourth

terms are Op(égy}\,Téj_\,lT). It follows that

1 /- N/
< (Ao = A°H) & = Op (6, hr03 ) - (C.92)
By (C.92) and following the above arguments, we can further show that the second and third
terms on the right hand side of (C.91) are O p((5;§’VT). This completes the proof of Lemma C.5(ii).
[ |

Proof of Lemma B.3. For notional simplicity, we let A = ]\mo throughout this proof.
(i) Noting that
7
~(Mjz —Mpo) = A(AA)TA — A’H(H'AYAH)TH'AY =3 oy, (C.93)
k=1
and by using the decomposition (C.81), we have
91 91
1

N () ZXtM — M po)e:

(Z UNT k) Et. (C94)

By (C.94), Lemmas C.4(i), (iv) and C.5(iii), we can prove that for any j = 1,...,m" + 1,

tTO

91
1
NT]( Z Xt M MAO)Et—i-BNT]@ 1)
j71
. )1 7 ) -1
< T(T) Z XL{( Z @NT,j)& + NT( Z XtUNT55t Bnt;(2,1)
=10 j=1,#5 I =10
. 91
ol el Z Xfonrser — Bars (2,1 +Op (S3p(m%) 2|, — ¥l + 8,37
J ™,
= 0 (34 (m) 2|, — @0l + 6, %) (C.95)

which completes the proof of Lemma B.3(i).
(ii) Noting that for any j =1,....m° + 1,

T9-1 T0 1
1 J 4 1 J - o~ - o~
Ej XM (A’ —AH ) = Ej X'M:(AHV —AV)V H
N7(T) <= ' Al )i N7(T) <= ' Al ) 7



and VTH = (%AO’./N&)+(%FO’FO)+, by the decomposition (C.79), we have
-1
X M 3 AH
NT] Z )ft

8 1 o« + 1 00 + 0
E:X (D@ —AYA —F"F : :
NTJ A l:1uzm (N ) (T ) J (C.96)

We next analyze each term on the right hand side of the equation (C.96).
For [ =1, by the definition of @y7,1, Assumptions 1(i)(ii), and Lemma C.5(i), we have

1 i 1 A +
N > X{M jiinr, (NAO’A> (TFO/F(’) 1o
J t=T9_,
. 9-1 mO+1 TP-1 10~+100+0
= X/M; X, XA —A’A) <—F’F>
N7;(T) t;I A NT ; 3;1 MMk <N T Ji
1 mO+1 T0 1 79-1
= Or | w7 Z ) - Z > i [ <CA ]
t T0 1 5= T 1
= Op (piiny) = Op (pag,}w(m%* 2|0 — ) (C.o7)

For [ = 2, by the definition of @7 2, we have

0

]‘ Z X U ]‘AOIA M lFOIFO +f0
N7;(T) TATNT2 \ Iy T t

]71

0+1T71 TOI

= NTTJ P22 Z XM me“’( F”’F°> F

k=1 t= T0 1 s=TQ_,
mO+1 1 -1 T,871
_ / ~ -
- Z NT7;(T) Z Z Xst Xt Mz Xs | g,
k=1 t=T0_, s=TY_,
= = [ B51(A), e 8011 (B)] (G0 — @) (C.98)

+ =, % T9-1 T0—1
where xy, = f¥(£FYF°)" f? and 7. (A) = WJ(T) ZtiT]@Ll ZsiT,S,l X5t XtM 3 Xs. By Lem-
mas C.4(v) and C.5(i), we may show that

|@5(A) = @5 ]| = Op (o Ar(m®) ™), 1 <Gk <m0+ 1, (C.99)
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0_ 0_
where ®%, = W](T) ZTJ , ZT’“ . Xst XM p0X,. Hence, by (C.98), (C.99) and the Cauchy-

—T0 _T0
1‘/—Tj71 s=T,_,

Schwarz inequality, we have

0__
L Z X/M xi Lava) (Lpopo +f°+( e @5 041) (8o — @°)
NT] (T) t:TO ! A NT72 N m T t ‘717 " ] m0+1 m

— H {~;1(1~\~)7..., ~;“»77,10+1(-/~\~)] (Gpo — @®) — <<I>;f17m o m0+1) (G0 — a())H
= 0p (10, her(m) 20 — ). (c.100)

For [ = 3, by the definition of 4n7 3, Assumptions 1 and 3(ii), as well as (C.92), we have

0
-1

ijl-(T) t:;: XM jinT3 (%AM>+ <%F0/Fo>+ﬁ)

1 gy (ES S Loz (Lpogpo) o

= ¥ t; X/M NT ;8%1)@%51& <NA A) <TF F) fi
T)-1 T9-1

) mO+1

= N2T ) leﬁkﬂ Do x| (JJetA”)| + [l (A~ ACED) ) |17

t:TJQ_l s=TQ |
= Op (05t (m") ™2 G — a°))) (C.101)
To study the next two terms, we can apply the arguments used in the proof of Lemma C.3(ii)

and show that || X/(A° — [UEI+)H = Op(p'/2535 + 77]1\{%) This, in conjunction with Lemma
C.4(iii), implies that

1 -
XM (A~ AHT)| = Op ( Y25+ }@) (C.102)
and similarly for j = 1,--- ,m0% + 1,
T9-1
1 q Ing_ (A0 xErt ol _ 1/2 ~1/2
N;(T) t_; 1 | XiM 5 (A° — AH )| [| 7] = Op ( S+ nNT> (C.103)
j
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For [ = 4, by the definition of 4y 4, (C.103), and Lemma C.5(i) and noting that MA[X =0,

0__
1 Tj 1 / ~ 1 07 X * 1 0/ 0 * 0
N7 (T > XiMjzinra (A”A) (ZFYF’) f;
J t=T9_,
1 TO 1 1 m0+]_ Tlg—l 1 + 1 +
rrt 0~/ v/ X or X 0/ 120 0
= X/ M — AH — XA —AYA —F"F
| > 77 X X fmxid| (gad) (FoF) s
J t=T9_, k=1 s=T0 |

mO+1 T)-1 191

— Op N2T Z 17| Z Z | X AE) |||l 122021

0 0
tTlsT1

— Op (5];}VT(m0)—1/2||amo_a ). (C.104)
For | = 5, by the definition of 4n7 5, Assumptions 1(i)(iii), (C.103), and Lemma C.5(iv), we
have
1 Tjoil ! ~ 10/~+ 10/0+0
N (T) t_%o: X/M jiinTs <NA A> <TF F> S
“r0
1 g 1 A +
_ 00 A L A0R L 300 0
=~ ¥ t; X/M (NTZAf53A> (NA A) (TF F) 1!
< 1 g XM < (A° 027 A0 L \oA " 1 20150 T 0
< e 3 XM A (S () ()
“10
1 g d 1 1 *
_ + 0/ (X _ AOF L A0 L 0 0 0
N (D) ; XM AH )[;fssS(A A’H) (NA A) (TF F) !
“r0. -
T)-1
e +
- 0r | yore X XM HHZfO’AOHHf?H
t =T ,
-1 p
+Op NQT Z > |xiMz (A — AH) ||| (A - A°H) £ £
t TO s=1

— Op (5_NT+5PNT(m )*1/2||amo—a0||). (C.105)
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For | = 6, by the definition of 476 and Assumptions 1(i)-(iii), 2(ii) and 3(ii), we have

0_
Tj 1

1 Z X'M « il lAm]\ - lFO/Fo +fo
N7;(T) 19 ETATNTS \ N T t

T01 mO TP —
1 e L ok ! 0 0+ 0
= X s X’ —AYA —FYF
Nm(T)ZtANTZZ” (N )(T )ft

t= TO k=1 s=T10

k—1
S S N1\ +
< N Xz, XA (—AO’A> (—FO’F°> 0
N7;(T) t_%(; NT kZ:l S_; N T
Jj—1 k—1
1 -1 . m041 TO—1
N 2 X NT > Y. (Pi—Ppo)ei XA <NA°’A> < FO’F0> 7o
I t=T9_, k=1 o=T0 |
1 g mO41 T . N
A0 or 0 o ~ or 0/ 10 0
TN > XIAY(AYA%)T NTZ Z AV i) XIA (NAA (TF F) 7!
! t:Tjo—l k=1 s= TO ]
= 00 (28, () 20— 1] (€.106)

For | = 7, by the definitions of @77 and x,;, we have

0,

1 Z XM < i LAoi - 1 porgo +f0
Nr;(T) EATNTT\ N T t

]71

0_
) ; szl X/M~ Lig fOlAOIA lAO/A + lFOIFO —l—f()
N7j(T) <~ A\NT &7 N T ‘
=19 | -
. -1 7 ) -1 7
— , , ~ —_—
= T 2 X XiMpess s 30 D X Xi (M~ M)
I =0 | s=1 I o s=1
-1 T0 1
= ! Z X|M poe; + PN S ]Z ixstxg(MA—MAo)es, (C.107)
NT]( ‘v NT7;(T) Rl
- “10

where ef = % Zs 1 Xst€s- On the other hand, following the proof of Lemma B.3(i) and (C.95) in

T9-1
particular, we may show that HW](T) > o ST X X! (M z — M po0)es + Byrj(2, 2)H =
=79,
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Op (5];1T(m0)—1/2||am0 — |+ 5;,%) Tt follows that

-1 T9-1
1 1 oxivt, 1 1
N D) Z X/M jinry(— AO/A)+(TFO’FO)+fP— N (7 Z X{M poe} + Bnr,j(2,2)
_TO _TO

= 0p (53 (m") 2@, — 0l + 6,37

For | = 8, by the definition of un7 35, we have

70

]

Z 'LL iAO/A * lFO/FO * f()
NT] - Mgunrs | T t
] 1

T0_

] 1T/” 10/~+10/0+0
— NTJ Z ﬁ;asasA (NA A> (TF F) f!

T -1

_1 O ! 10/~+10/0+0
= NT (T tZ XM A€€A<NA A) <TF F ) J? = Byr;(1). (C.109)

Jj—1
By (C.96), (C.97), (C.100), (C.101), (C.104)—(C.106), (C.108) and (C.109), we can complete the
proof of Lemma B.3(ii).
We have thus completed the proof of Lemma B.3. |

Let AR = (}‘173’ ceey ).\N7R)/ and AR = ﬁ Zthl(Y;f_XtBt,R)(Y;f_XtBt,R),AR = (5\1’3, ceey S\N,R),-

In order to prove Lemma B.4 in Appendix B, we first need to prove the following technical lemma.

Lemma C.6 Suppose that Assumptions 1 and 2 in Appendiz A hold and R > Ry. Define the
Ro x R matrit Hr = (%FO’FO) (%AO’AR) with the Moore-Penrose generalized inverse HJ]; =
-+
Hp(1)
s
Hp(2)

Let VNT’R denote an R x R diagonal matriz consisting of the R largest eigenvalues of the

], where H;(l) and H;(2) are Ry x Ryg and (R — Ro) x Ro matrices, respectively.

N x N matrix ﬁthzl(Yt - XtBt,R)(Yt - XtBt7R)/ where the eigenvalues are in decreasing
order along the main diagonal line. Write Ar = [AR(l),AR(Z)} and Hp = [HR(I), HR(Z)} ,
where Ag(1), Ar(2), Hg(1), and Hg(2) are N X Ry, N x (R— Ry), Ry x Ry, and Ry x
(R — Ro) matrices, respectively. Furthermore, write VNrr = diag{VNT’R(l),VNTﬁ(Q)},
where V7 r(1) denotes the upper-left Ry x Rog submatriz of VT r. Then we have

(i) ~ HIV\R - AOHRH2 =0Op (5;,?VT)7

(ii) & | RipAr ~ HRAYAH 5| = Op (3,47),
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(i) % ||Ar (1) = A R() V(1) = O (5,37)) and [Ha@)[ = 0p (5,37).
(iv) HPI;(DH — Op(1) and Hﬂ;(z)H — Op (5};}VT) .
Proof of Lemma C.6. (i) When R > Ry, we can follow the proof of Lemma C.2 and show

that 7p = %EtTﬂ HBt,R — BY)1? = op(1). Next, using ¥; — XtBt,R = A% + & + Xy(B) - Bt,R)
and dt,R = BLR — B9, we have

M=

Arp—A'Hp = (Y — XeByr) (Vi — XuByg) Ar — AH g

o~
I
—_

[_Xtdt,R + Aof,? + 84 [_Xtdt,R + Aofto + 64 , Ar — A’Hpg

Il
_ 3= 5= 3
1M

Mﬂ

T T
. . . 1 R 1 . .
! ! 07 A O/ /
XtdtdetyRXtAR - NT El Xidy rfy AT AR — ~NT ;:1 Xidy rei AR

~
Il
—

T T
1 . 1 . .
NT E A°fPd; X Ap+ = NT 2 A’ fPeiAR — NT E 1 evdy pX{AR
t= t=

_T Z Eth/AO/A —|— — Z EtEtAR
t=1

8
> g (C.110)
j=1

Following the proof of Lemma C.3(i), we can readily show that +||ig || = Op (Sy% + 71R) -
Then we readily have %H./V\R — A°Hpg|> = Op (5]_\[271 + 7). With this, we can apply the argu-
ments used in the proof of Theorem 3.1 to show that 77z = Op (5;,?\/"[’) . Then we may complete
the proof of (i).

(ii) Noting that
1 A’ R L e 0/ A 013
~ARAR — LHRAYAH g
1 o . o . 1 o . . 1 .. o .
= (Ar- A°HR) (AR — A°Hp) + ~(Ar - A°HR)A°Hp + NH/RAO’(AR —A’Hp),

the convergence result (ii) follows from the triangle and Cauchy-Schwarz inequalities, Lemma
C.6(i), and the fact that [|[A°Hg||> = Op (N).

(iii) Let Vi and Vi (1) denote the probability limits of VNT, r and VNT, r (1), respectively,
as (N,T) — oo. Recall that Hp= ﬁFO'FOAO’AR and %A’R/\R = Ig. As the application of
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PCA method, we have the identity
1 < .
NT Z — XiBy ) (Vs = XiBy g) Ar = A V1 g

Pre-multiplying both sides of the above equation by A’ 'z/N and using the normalization NA}%A R=

IR yields
T

R 1Y (Vi = XiByg) (Vi — XuByp)' | Ak = Vit
t=1

N2T

which together with V; — Xy8, p = Xu(B] — B,.r) + A°fP + &y, yields - ARACFYFOAY A +

dNT,R = VNT,Ra where

dNT,R = NQT Z [Xt — Be.r)(BY — Bep) X[ + exet + Xu(B] — Byg) f A

+A°f) (51‘, - /Bt,R) "X+ X:(B] — /Bt,R)gz/t +e(B) — Bt,R)/Xé
+Afe; + eof'A] Ar

8
= g dR,;.
i=1

Following the proof of Lemma C.3, it is easy to show that ||dn7 Rr| = Op (5; }VT> by proving

that dgj, j = 1,2,...,8, are either Op(5 NT) or of smaller order. For example,

T
| ﬁ R |3 X8~ B (89— By X1 | A
t=1
1+ |12 , le~il.0 - |2 i
= NHARH Fmax (XtXt/N)fZHﬁt—ﬁt,RH =Op (5p,NT>7
=1
ldroll = NiT Al that Ar NT le ”*PNHARH = Op (7).
and
ldrall = N2T ZXt BtRf?’AO’A |

T 1/2
< a1 g (3 3 - )

Op (if*) = O (9,57 )

IN
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Then
1
N2T
Observe that —=A A°FYFOAY A ; has rank Ry at most in both finite and large samples.
N2T AR g
Let Ayr (1) = 2AYAR (1) for 1 = 1,2 and £p = LFYF. Then

A/RAOFO,FOAO’AR = VNT,R — dNT,R £> VR. (C.lll)

L A AOpOp0AV A, — | Avr (D ErAnt (1) Ay (1) SpAvr (2
N*T Ayr (2)XrAnT (1) Ay (2) XrAnT (2)

Note that 3r = Xx + op(1) by Assumption 1(i). Following the proof of Lemma A.3(ii) in Bai
(2003), we can show that plim(y 7)—ccAls (1) ZpAn7 (1) = V(1) which has full rank R.
This ensures that NéT A}%AOFO’ FOAYA ; has rank Ry in large samples and A’y (2) SErANT (2) LN
0. Then A'y (1) SrANT (2) Zo by the Cauchy-Schwarz inequality. By the asymptotic nonsin-

gularity of 35, this also implies that Ay (2) = op(1) and Ayx7 (1) ZA (1) for some Ry X Ry

nonsingular matrix A (1). Consequently, we have

_ 1

FFUFOAYAR (1) L srA(D)

Hp(1)

and

. 1 .
Hp(2) = WFO’FOAO’AR (2) = op(1).

Then Hp (1) is asymptotically nonsingular and H ; has rank Ry.
By the definition Ag = 5 S/, (Vi — XeB, g) (Vi — XuBy )’ AR and the identity 5 >/
(Y, — thfth)(Y} — thfth)’AR = Ap VNT’R from the PCA, we have

1

o . 2 1. = . 2
T Y T —
1 .. 0+ 2 1 . 0+ 2
N HARVNT,R (1) -A"Hg (1)H ty HARVNT,R (2) - A"Hpg (2)H :
- . 2
Lemma C.6(i) implies that + HARVNT,R (1)~ A°Hg (Z)H = Op(élﬁ\,T) for | = 1,2. Since
. . . . 2 .
Vg (1) is nonsingular, it follows that HAR —A"Hg (1) V;T,R (1)H = Op(égj\,T) and H V;Tﬁ (1)H

< [VEQ| + |[Vare ) = Vi) = 0r ().

In addition,

IN

o = 2 [Anbirae - a0 2 [Anbrae|

= Op (5;?\@) +Op (5;3\/T> =Op (51;?VT> ’

¥
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.. 2 . R 2 . .
because & |ArVrr ()| < i Vra(@) [Ar|| /N = R Ve p(2)) and pna(Var.a(2)
< g1 (ARA’FYFOAYAR/(N?T)) + |ldnrrll = lldnr.rll = Op(5, ), where gy q(-) de-
notes the (Ry 4 1)-th largest eigenvalue of the square matrix in the parentheses. In view of the
fact that

9

A0H (2)”2 - %Tr (Fir(2) Fr (2 AYA°) > i (AYAY/N) || Hr (2) ’

v
N
. 2 1 . 9 -
we have HHR (2)” < [ttamin (AA%/N)] 7! 4 HAOHR (2)” - OP((sp,?VT)‘
(iv) Since Hp is right invertible asymptotically, by Proposition 6.1.5 in Bernstein (2005,

p.225), the R x Ry generalized inverse H 1—; of Hp is given by

o + .

o :H;% [ﬂRﬁIer _ ﬂ;%(l) (IT.IRHIR)i1 _ [ H%(l) ] '

o/ . .\ 1
'y (2) (HRHp)
Then by Lemma C.6(iii)

-t

[Eraw] < ||| (Fems) | = 0p ).
] = o] | (ait) | o0 (14r)
We have thus completed the proof of Lemma C.6. |

Proof of Lemma B.4. (i) The proof is similar to that of Lemma C.2. Notice that

T

Qnr(B, An) = 1 (Vi — Xif) Ma, (Vi — Xif,).
t=1

Using Y — Xi8, g = Xi(8] — By.p) + A°fY + &1, we have
0 > Qnr(Br,Ar) — Qnr(8°, AR)

T
S [ X Mg (¥~ Xeh) — (Y XM, (Y - X,50)]
t=1

T
= NT > [(/Bt,R — B XMz Xi(Bp— B7) —2(Bep — /3?)'X£MARAOJ”E}
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By Lemma C.1(i) (with Ry and A being replaced by R and Ag), we can prove that

T
1 : _
7 2 (Bur = B XIM g o = Op (920,31 ) -

t=1

Let dg.p = B — B° and dp g = ﬁvec(MARAO). Define

. 1 . .
Ap = diag(XTM 3, X1, ..., Xy M 3 Xr) and Cp = @M, Xi,.., ff® My, Xr.

N1/2
Then

T

1 . . .
= [(Bur— B XIM g, Xe(Bp — B9) = 2B, n — B0 XM 4, A
t=1
1. .o
= TJB,RARd@R — =dj rCrds .

It follows that

1 g A 9. .. 1251

75 rARAs R — - dy RCRAs R+ OP < Op, NT) <0.
This, in junction with the fact that

1/2

iy wCnisn| < [y pin] " [d wCrCrdon] " < |nn] || [ Chn)].

implies that %cfﬁyRARc'lﬁ’R — # dA’RH Hdﬁ’RH ui{gx(C;%C’R/T) + Op(p1/2(5;]1\7T) < 0. Using

a decomposition similar to (B.8) in Appendix B, we can readily show that Mmax(C;%CR/T )
— op(1). By Assumption 1(ii), fipin(AR) > ¢z w.p.a.1. and ||da g|| = Op (1). Tt follows that

T

1. - 1 :

Flds.rl® = 5> 1Ber = G717 = op(1).
t=1

Note that V(R,3g) = ming A, Qnt (8, AR) subject to ApAr/N = Ipg. Let s.(B) =
Mr[ZtT:1 (Y, — XiB;) (Vs — X48,)' /T). For any R < Ry, we make the following decomposition:

1 N 1 Ro
8) =~ 3 s(8 Z sr(B) = S1(8) + S2r(8) .
r=Ro+1 T:R‘H

Noting that S;(8g) > Sl(BRO) = V(RO,BRO), we have

V(R, Br) = V(Ro,Br,) = [S1(Br) = S1(Br,)| + Ser(Br) = S2r(Bp).
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Let 50 = s, (3 50, [ACSOSAY +evet + X(5Y — B,.r) (BY — B X{] ) - Notice that

1 .
N sr(Br) — 38
1 < . .
= ﬁ” Z {(Aoftog; + 5tfP,A0,) + [Aofto(ﬁ? - Bt,R),Xé + Xt(ﬁg — 5t,R)ftOIAO/]
o8 = Bur) Xi+ Xu(BY - Bor)el]} .
- , 2 || o ,
< < t_ZIAOftOEt N7 ;Aof?(ﬁ?—ﬁtﬂ) X; + N7 th — Bir)' X,

sp sp

Under Assumptions 1-2 and using the fact that ||dg r||> = op(1), we can readily show that
the second and third terms in the last expression are op(1). The first term is Op((NN T)fl/ %) by
Assumption 1(iii). It follows that

Ro
Sor(Br) > % Z sy + op (1)

>
r=R+1
1 X
00/ 0 A O
> <7 _XR;lur(AF’FA’)JroP(l)

Y

(RO - R) Mmin(FO,FO/T)Mmin<A0,AO/N) +op (1)
= (RO - R) Mmin(EF):umin(EA) +op (1) )

where the second inequality follows from Weyl’s inequality. In sum, we have

plim inf V(R7 IBR) - V(R(): BRO) > CR, CR= (RO - R) Mmin(EF)Mmin<2A)/27

(N,T)—o00

completing the proof of Lemma B.4(i).
ii) Recall that V R,B = ming A QNT B3, AR) subject to A’ Ar/N = Ig. Noting that
R :67 R R

V (R, BR) = QNT(BR, AR), by the triangle inequality, we have
V(R Br) = V(Ro. Br,)
< ’QNT(BRv A - R) - Qnr(8°, AO)‘ + ’QNT(BROa Ary) — Qnr(8°, A°)

Qnr(Br. Ar) — Qnr(8°, AO)} -

< 2 max
RO S RS Rmax

It suffices to show that QNT(BR,AR) — Qnr (Bg, Ao) = Op (5;?\@) for each R € [Ry, Rmax]-

Let H J]; denote the Moore-Penrose generalized inverse of H Rr such that H RH 1—; = IR,; see, for
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example, the proof of Lemma C.6(iv). Noting that V; — X;3Y = Af? +&; and M ,0A° = 0, we

may show that
T
1
Qnr(8°,A%) = NT Z (Y = XeB9) M po(Ys — Xo3)) = NT t_ZIEQMAoft-

Let & = & — (A — A°H p)H f°. Noting that
- Xt/Bt,R = (XuB}+A°f) + &) — Xt/Bt,R
= X¢(8? ~ Bp) + ARH pf? + ¢ + (A°Hp — Rp)H j, f?
= Xu(B) ~ Brp) + ApH 0 + 2

and MARJUXR = MAR (ARVNTJ%) = 0, we have

T
Qnr(Br. Ar) = > (Vi = XiByp) My (Y — XiBy p)

3= 3l-
il

SN

[Xt(ﬁ(t) — Bg) + 51:] I M, {Xt(ﬁ? — Big) + &
t

T
1 o o 1 : 0 ; 0
NT 2 dfMARet + NT ;(ﬁt,}% — By )/Xt,MARXt(ﬁt,R - B)

Z EM i Xi(Byp—BY)
= Il—i-IQ—QIg.

We next prove Lemma B.4(ii) by only showing that I} — Qn7(3° A%) = Op((S;?\,T), I, =
Op(6, %), and I3 = Op(6, 3 7)-
First, using &, = ¢, — (Ag — A°HR)H ; 12, we make the following decomposition:

T
1 9 . .+ o . .+
L = WE et — (Ap — A’HR)H o f)Y M [er — (Ag — A°H p)H p f/]
=1
T
1 0 0
— ﬁg E;MAR{:} TE ft/H AR AHR)MAR&

o . .+
Z PO (Rp— A°HE)YM (K — A°HR)H 1 f7
= 1171 — 2]172 + I1.3.

Using the arguments as in the proof of Lemmas C.1(iii)(iv), we can show that
T

Ii1 — Onr(8°, A°) = NT Zet P o — Pr)e; = Op (657) = Op (5;}@) :
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For I 2, we have

T T
1 ot (X orr ) 1 ot X 0Fy \/
1172 = W;ft HR <AR—AHR> Et_ﬁ;ft HR(AR—A HR)PAREt
= ILoq— 11,2

Using the decomposition in (C.110) and Lemma C.6(i), we can readily show that Ij 12, =
Op (5;?VT>. By the Cauchy-Schwarz inequality, the fact that P Ay IS @ projection matrix, and
Lemma C.1(iii),

|12 <

1
[
— 0Op (5;,}\/7’) -Op (8y7) = Op (5;?\/7’) !

where the following result which can be proved by Lemma C.6 has also been used:

L 1/2
T 5P ARgt]
t=1

1/2
]|

VAN

1 X (% ot c0l|?
—TEH(AR—A HR)HthH

i i £ o1

— Op (5;3\@)‘ (C.112)
Thus we have I1 2 = Op (5;; NT) Similarly, using the fact that M 4 Ay 18 & projection matrix

and by (C.112), I; 3 < ﬁ Z’r:l H (AR — AOHR)Hth H =0Op (5;?\@) . As a consequence, we
may complete the proof of I} — Qn7(8°, AY) = Op((S;?VT) for each R € [Ry, Rmax|-

Next, by Assumption 1(ii) and the fact that M Ay 18 @ projection matrix and that fp =
LS L Bur 8P = Op (5,3 , we have

I < NT Z H 57& R ™ /Bt) XtM Xt(ﬁt R ™ 5t)H llgtiXTNmax (XtXt/N) g = Op (5;,?\@) :

To study I3, we apply & = e — (1‘3 — AOI:IR)I:IRf? and MAR =Iy— PAR and make the

following decomposition:

I; = NT Z 1M 4 X (Ber — B7)
1 : 1 & :
= N7 ZdﬁXt(ﬁt,R —89) — NT ;dPARXt(ﬁt,R - BY)

ZfE’H (AR —A°Hp)M Xi(By 5 — B7)

= 13,1 - 13,2 — I3 3.

35



By the Cauchy-Schwarz inequality, Assumptions 1(ii)-(iii), the fact that

23 e ] = 0r (5h) S oA = 08 (53 ¥, =1

and Lemma C.6(i), we have

31|

IN

1/2

1 : _ _ _

N2T Z5tXtXt5t] 77}%/2 = OP(p1/2N 1/2)OP(5p,}VT) =0p (51;3\/"[’) J
t=1

1/2 T 1/2
o < | S Paa] | S X )
= t=1

< Op (53) s (XX /N) 132 = 0 (5,31
and
1/2
|133| < izT:fO/I—.I—H(‘AR—‘AOI‘IR)/I\d (AR—A HR)I:I+f0
S INT & t Hp A RJt
L 1/2
“\NT Z(/Bt,R — B X Xe(By.r — BY)
=1
1/2
< iR wosa ] |2 vt

- N1/2 R R t Hmax <t

= Op(5,,r)0p (1) Op(6, kyy) = Op (6;?w) -

Hence I3 = Op ((5;?\@) . In sum, we have shown that QNT(BR, AR)—QNT (By, Ao) = Op (5;3\@)
for each R € [Ro, Rmax), completing the proof of Lemma B.4(ii). [ ]

Proof of Lemma B.5. Let

1 m+1 T;j—1

70 > (V= Xiay) My (Vi — Xiay) — eled]
j=1 t=Tj_1

D (otm, A; Ty) =

and 637 = wr > 1oy £j¢¢. Note that

<6¢m(Tm),1~X(Tm)) =arg min Dyr (o, A;7Ty),

Qm,

and



with 62(Tp) — 530 = DN1(&m(Tn), A(Tn); Trn). We prove the lemma by showing that (i)

0
m ~ —
a7 17 (Tno) = 7] = or (1); (C.113)
and (ii)
%(52(7}1) - O’NT) >c+op(l) w.p.a.l for some ¢ > 0. (C.114)
NT

We first show (C.113) in (i). We make the following decomposition:

1 moy1 T)—1
~2 ~ 1/ ~
UTO = N7 Y; — Xpa] Mg [V: — Xydy]
NT J=1 t=17 |
= T [Xe(af = ) + A°fY + ] Mg [Xi(of — &) + A7 + ]
J=1 =10,
m941 Tgofl
= = Y [EMge+ fIAYMGACS + (0 — ) XM 5 Xi(e) - &)
J=1 t:T]Q_l

+26i M 5 Xy(0f — &) + 26f M A £ + 2 fY AY M 5 Xy(o) — &)
= dinT +donT + d3nT + 2danT + 2d5NT + 2d6 N TS

where we suppress the dependence of &; = @; (T 0) and A= A(TO ) on Tngo for notational

simplicity. By Lemma C.1(iii),

T T
1 1
dinT = ﬁ ZE;M[X& = W ZE;Et + Op (5]?/27“) = 5%\/T + Op (5]?/27“) .
t=1 t=1

Using the preliminary results in Lemmas C.4 and C.5(i) and Theorem 3.4, we may show that
diNT = OP(‘S;,?VT) for I = 3,4,6. Using M 5o A° = 0 and (C.79), and decomposing M 5 —M o0 =
—(Pgz — Ppo) as in (C.81), we can readily show that

T
1
vt = o= Y A (Mg — Mpo) Af) = Op (6;3VT) , and
t=1

T
1 0 £0 -2
dsny = W;EQ(MA—MAO)A fi :OP(5P7NT>-

It follows that
7 (T%) — 7%z = Op (6,37) (C.115)

which, together with Assumption 2(ii), leads to (C.113).
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We now show (C.114) in (ii). We consider three cases: (a) m® = 1, (b) m® = 2, and (c)
3 < m® < Mupax. For case (a) of m% = 1, if n < m®, we have m = 0 and 7,,, = Ty = @. The true
model contains one structural break:
Yt—{ X+ A0 4 if1<t<TO—1,
Xiad+ACfP + e TP <t<T;

while the working model that ignores the structural break in the regression coefficient is
Y, = Xia+ AV + e, 1<t <T,

where e; is the error term. Note that 62(7p) = w7 Zt L (Ve — Xpa) Mz (Y — X@) , where
_ 1 &
(&, A) = arg mln — Y (Vi — Xia)' M (V; — Xia)
A NT &
subject to A’/A/N = IR,, and we suppress the dependence of & and A on Tp. Using Y; — Xya =
Xi(BY — a) + A% + ¢, and Lemmas C.1(i)(ii), we can readily show that

T
> (i — Xia) M4 (Vi — Xa)
1

~+~
Il

[Xe(8) — ) + A% + &) Ma [X:(8) — @) + A°f7 + 4]

~
Il

1

Il
2|H Z‘H 2|H
N ~ ~
Mﬂ

E

[Xe(BY — @) + A°f0) Ma [Xe(B) — ) + A°f0] + Z eter + Op(p'/26, \p)

o~
Il

1

uniformly in a and A such that A’A/N = I'g, and ||a|| < Cp'/2. Tt follows that

T
. 1 > 5
0'2(76) = WZYZMAYt-FO'?VT—FOP( 1/26p}VT)
t=1
| I
. L o o =2 1/25—
= A: A’?/IJIVI:IRO NT ZYtMAY}/ +anr +Op(p770, NT)
1 N rT
- 1/25—1
= NT ;H/Jr Z '| + 5%+ Op(p 0pNT)
r=Rp t=1
1 N rT
Z NT Z For ZXt By —a)(B) — &) X{| + ¥y + Op(p 1/25;NT)
r=Ro+1  Li=1
1 T
= NTa. A’A/N In [Z Bt —a) XtMAXt(ﬁt ) +‘7NT +Op(p 1/25;NT)
o [t=1
1 112, =
= TZ 187 = &||” + a%r + Op (025, jp),

t=1
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where Y; = X;(3 — &) + A°f?, the second and third inequalities follow from Weyl’s inequality
and Assumption 1(ii), respectively. Consequently, we have by Assumptions 5(i)-(ii)

mO

F?\/T [52(’]6) — 5?VT] > cycg+op (1),

where cg is defined in Assumption 5(i). We have completed the proof of (C.114) for case (a).
In cases (b)-(c), it suffices to consider the case where m = m® — 1 (If m < m® — 1, one can

always augment the set 7,,, by m® — 1 — m true break points which are not inside 7,, to make

D7 (60n(Tr), A (Trn) ; Trn) smaller). For the case (b) with m = 1, we consider three subcases:

(b.1)2<Th <T?, (b.2) T? < Ty <T9, and (b.3) TY < Ty < T. In the subcase (b.1), [1,T} — 1]

does not contain a break point while [T1, T contains two true break points 77 and T3. Observe

that

Ty -1

- ~ 1 ) )
Dur(@ (). ATRT) = 5 3 (Wi = Xidha () Mgy Y = X (T3)) = i

t=1

1 T
T {[Yt — X162 (Th)|' M g (7, [V2 — Xy62(Th)] — sgst}

t=T1
= DNT,l + DNT’Q.

Noting that the interval [1,77 — 1] does not contain a break point, using the arguments as used
in the study of case (a), we can readily show that

T -1
Dyt > Z H041 —a1(Th) H + Op( 1/26p}VT)

Similarly, we can show that

T
Dnrpo > % Z 187 — 542(71)H2 + Op( 1/25p NT)-
t=T1

Then by Assumptions 5(i)(ii)

0 ~
T’A”?VTDNT(&l(:m,A(Tl);:ﬁ)
mP o o
% o ML EACO e o S NCHI SR
NT T 2 T
2 Tj—1
> cx(guanzTA2 ]th; Hﬁt—onH +op(1
Jj—1
> cpeg+op(1).
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In the subcase (b.2), both [2,77 — 1] and [T1,7] contain a break. As in subcase (b.1), we

can show that

0
m -
Dyr(a(T1), A(Th); Th
TA?VT Nr(ai(Th), A(Th); Th)
mY T1—1
> 2 Z H/Bt —a( 7'1 ‘ + Z Hﬁt —as(Th) H +Op(pN~ 1/2+p1/2T 1/2)
TAY t =
= (gl,lanzTAQ Z Z HBt‘“JH > czegtop(1).

Tj ltle

The proof for the subcase (b.3) is analogous to that for the subcase (b.1). Hence, the conclusion

(C.114) follows in the subcase (b). Case (c¢) can be studied analogously. This completes the

proof of the lemma. [ |

Proof of Lemma B.6. For 7,, € T,, with m® < m < mmax, we recall that

62(Tm) = Qnr(éun(Tm), A(Tm)’Tm)

T;—1
1 m+1
= é{lnl}}xﬁz Z Yt—Xtaj)/MA(Y}—XtOAj)
J=1t=T; 4
m+1 T;—1
- mln—z Z (Vi — Xeaj) Mg 7.,y (Vi — Xearj),
J=1t=T;_4

and 6% = w7 S°L | ler. In view of the fact that

by (C.115), we have

m+1
0 < 6%(T0) — 6%(Tm) = %7 — 5%(Tm) + Op(, 37) = > Jn1j + Op(0,%7),  (C.116)
7j=1

where Jyr,; = —inf, S (), S (@) = <7 Zfi;jlﬂ [(Y} — Xia) Mgz (Y — Xia) — gler| and

[Tj-1,T; — 1] does not contain any break point for j = 1,...,m + 1. Let O‘?,m = B%-,l and

- < T;-1 L ~1y-1 ,
&jm = 0(Ty) = argmin, S (a) = (Zt]T  XiM AT, )Xt) ZtiT];l X/ Mgz, Ye for j =

1,....,m+ 1. As in the proofs of Lemma C.4(i) and Theorems 3.1 and 3.4, we can show that
%H[\(Tm) —A%]2 = Op(&I;?VT) and ||&m — a?7m|] = Op((s;}VT). Then using Y; — XiGjm =
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e+ AOfD + Xt(aom — &jm), We have

Sj (&jm) = Z

— Xiljm) Mg (Vi — Xodtjm) — eget]

T;—1
1 4 ~ ,
= N7 { et + A% FP + Xi() = Gjm)] M3z [ee + AP FP + Xi(aY,,
t=T}_
] T;—1 T;—1
_ 'p . . 07 A O7 0,0
t=Tj_1 t=Tj 1
1 Tj—1 5 ;-1
0 - /
37 2 (0Gm = Gm) XIM g7, X (05 = Gm) + 7 D &M
t=T; 1 t=T; 1
5 T;—1 5 T;—1
0 ~ 0/ A O
txr 2 Mgy (@ = dim) + g D AMgr,) X (
t=Tj—1 t=T}; 1
= Sj71 + Sj’g + Sj,g + QSJ’A + QSJ”E, + 25j,6~
By Lemma C.1(iii),
m+41
—2
Z Sit = N7 th Anet = Op (OnT) -

In addition, we can show that

m+1 T

Z Sj2 = % Z fto’AOI(MA(Tm) - MAO)AOftO =Op <5;3VT> ’

j=1 t=1

m+1 m+1 T;—-1

LTS M C el 5 i (XX/N) = Op (353).
j=1 = t=T;_1

and similarly mHS ; = Op (672 for | = 4,5,6. Then by (C.116),
Js p,NT

Op (5;;NT> for all m € {m +1, ...,mmax} and 7,,, = {T1, ..., T,
of Lemma B.6.

7*(Tm)
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