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Abstract

This paper introduces a new model of stochastic production frontier that
incorporates an unobservable bound for inefficiency, which is naturally
instituted by the market competition. Our technical innovation is that
we use doubly truncated normal, truncated half normal, and truncated
exponential distributions to model the inefficiency component of the er-
ror term. We derive the form of density function for the error term of
each specification and the formulas for calculating the conditional mean
of the inefficiency levels. We also examine skewness properties of our
new estimators which point to an explanation for the finding of “incor-
rect”skewness in many applied studies using the traditional stochastic
frontier. We extend the model to the panel data setting and specify
a time-varying inefficiency bound as well as time-varying efficiencies. A
Monte Carlo study is conducted to study the finite sample performance of
the maximum likelihood estimators in cross-sectional settings. We apply
the model to a study of US banks from 1984 to 1995 utilizing a set of
competing specifications of the stochastic frontier model.
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1 Introduction

The parametric approach to estimate stochastic production frontiers was introduced
by Aigner, Lovell, and Schmidt (1977), Meeusen and van den Broeck (1977), and
Battese and Cora (1977). These approaches specified a parametric production func-
tion and a two-component error term. One component, reflecting the influence of
many unaccountable factors on production as well as measurement error, is consid-
ered “noise”and is usually assumed to be normal. The other component describes
inefficiency and is assumed to have a one-sided distribution, of which the conven-
tional candidates include the half normal (Aigner, et al., 1977), truncated normal
(Stevenson, 1980), exponential (Meeusen and van den Broeck, 1977) and gamma
(Greene 1980a,b, Stevenson, 1980).
All these formulations, however, allow unbounded support for the distribution of

productive (cost) inefficiency term in the right (left) tail. This assumption is plausible
if we study production units in a highly regulated or highly segmented market. It
becomes unrealistic if we study competitive markets where the most inefficient units
cannot exist for long. As long as there is some degree of competition and exit of highly
inefficient firms from the market, production units constitute a truncated sample.
The consequence is that even if we correctly specify a family of distributions for the
inefficiency term, the stochastic frontier model may still be misspecified.
This paper introduces a new model of production frontiers that incorporates an

unobservable upper bound for inefficiency. Technically, we introduce a truncation on
the right tail of the distribution of the inefficiency component. We consider the dou-
bly truncated normal, which includes the truncated half normal as a special case, and
the truncated exponential distributions, at the cost of an additional parameter—the
truncation threshold. The inefficiency upper bound, or the efficiency lower bound,
can be consistently estimated by the maximum likelihood estimation along with other
model parameters. This bound can naturally be used for gauging the tolerance for
or ruthlessness against the inefficient firms. It is also worth mentioning that, using
this bound as the “inefficient frontier,” we may define “inverted” efficiency scores in
the same spirit of “Inverted DEA” described in Entani, Maeda, and Tanaka (2002).
We examine skewness properties of our new estimators. Our analysis points to an
explanation for the finding of “incorrect”skewness in many applied studies using the
traditional stochastic frontier and the potential for our bounded inefficiency model
to explain these “incorrect”skewness findings. Researchers have often found positive
instead of negative skewness in many samples examined in applied work, which may
point to the stochastic frontier being incorrectly specified. However, we conjecture
that the reason is that skewness is very hard to identify empirically when inefficiency
is bounded. That is to say, when the true distribution of the one-sided inefficiency
error is bounded (truncated) the extent to which skewness is present may be substan-
tially reduced, often to the extent that negative sample skewness is not statistically
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significant. Thus the finding of positive skewness speaks to the weak identifiability of
skewness properties in a bounded frontier model.
We also extend the model to the panel data setting and allow for time-varying

inefficiency bound. By allowing the inefficiency bound to be time-varying, we in effect
contribute another time-varying technical efficiency model. Our model differs from
the existing literature in that, while previous time-varying efficiency models, notably
Cornwell, Schmidt, and Sickles (1990), Kumbhakar (1990), Battese and Coelli (1992),
and Lee and Schmidt (1993), are time-varying in the mean or intercept of individual
effects, our model is time-varying in the lower support of the distribution of individual
effects.
The outline of this paper is as follows. In Section 2 we present the new models

and derive analytic formula for density functions and the calculation of inefficiencies.
Section 3 deals with some technical issues of implementing parametric maximum
likelihood for the bounded inefficiency model. In Section 4 we present Monte Carlo
results on the finite sample performance of the bounded inefficiency model vis-a-vis
classical stochastic frontier estimators. In Section 5 we give an illustrative study of
the efficiency of US banking industry in 1984-1995. Section 6 concludes.

2 Models

We adopt the following Cobb-Douglas log-linear model,

yi = A+
KX
k=1

αkxi,k + εi (1)

where
εi = vi − ui. (2)

For every production unit i, yi is the log output, xik the k-th log input, vi the noise
component, and ui the inefficiency component. We maintain the usual assumption
that vi is iid N(0, σ2v), ui is iid, and vi and ui are independent from each other and
from regressors.
We subdivide the model in (1) into sub-models according to different specifications

of ui, the inefficiency component. If ui is distributed as doubly truncated normal, we
call the model doubly truncated normal model, and similarly for the truncated half-
normal model and truncated exponential model. By the shape of probability density
functions, there is an implicit assumption in the truncated half normal model and
the truncated exponential model that most firms are relatively efficient. The doubly
truncated normal model can be more flexible. It can describe the scenario that only
a few firms in the sector are efficient, a phenomenon that is described in the business
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press as “few stars, most dogs”. 2 In the following three subsections we provide
details for the specifications of the three sub-models. In particular we derive the
density functions for the error term εi, which is necessary for maximum likelihood
estimation, and the analytic form for E[ui|εi], which is the best predictor of the
inefficiency term ui given knowledge of εi.

2.1 Doubly Truncated Normal Model

The first model we consider assumes that the inefficiency term has a doubly truncated
normal distribution. Specifically, ui has the following density function,

fu(x) =
1
σu
φ(x−μ

σu
)

Φ(B−μ
σu
)− Φ(−μ

σu
)
1[0,B](x), σu > 0, B > 0, (3)

where Φ(·) and φ(·) are the cdf and pdf of the standard normal distribution respec-
tively, and 1[0, B] is an indicator function.
Note that the truncation parameter B can be a useful index of competitiveness of

a market or an industry.
Next we derive the probability density function for the error term, ε, which can

be used in maximum likelihood estimation. Since u and v are independent, the joint
density function of u and v is

fu,v(x, y) =
[ 1
σu
φ(x−μ

σu
)][ 1

σv
φ( y

σv
)]

Φ(B−μ
σu
)− Φ(−μ

σu
)
1[0,B](x)

=
exp(− (x−μ)2

2σ2u
− y2

2σ2v
)1[0,B](x)

2πσuσv(Φ(
B−μ
σu
)− Φ(−μ

σu
))

. (4)

The joint density function of u and ε is then

fu,ε(x, y) =
exp(− (x−μ)2

2σ2u
− (x+y)2

2σ2v
)1[0,B](x)

2πσuσv(Φ(
B−μ
σu
)− Φ(−μ

σu
))

(5)

Integrate (5) with respect to x, we get the marginal distribution of ε,

fε(x) =

∙
Φ(

B − μ

σu
)− Φ(

−μ
σu
)

¸−1
·
∙
1

σ
φ(
x+ μ

σ
)

¸
·∙

Φ(
(B + x)λ+ (B − μ)λ−1

σ
)− Φ(

xλ− μλ−1

σ
)

¸
, (6)

2We thank C. A. K. Lovell for providing us this link between our econometric methdology and
the business press.

3



where

σ =
p
σ2u + σ2v

λ = σu/σv. (7)

This is called λ-parameterization.
In practice we usually use another parameterization, called γ-parameterization,

σ =
p
σ2u + σ2v

γ = σ2u/σ
2. (8)

By definition γ ∈ [0, 1], this proves helpful in the numerical procedure of maximum
likelihood estimation.
Note that when B →∞, (6) becomes

fε(x) =

∙
Φ(

μ

σu
)

¸−1
·
∙
1

σ
φ(
x+ μ

σ
)

¸
·
∙
Φ(

μλ−1 − xλ

σ
)

¸
. (9)

This is the probability density function for the Truncated Normal-Normal model
introduced by (Stevenson, 1980). And if μ = 0, (9) further reduces to the likeli-
hood function for the Half Normal-Normal model introduced by (Aigner, Lovell, and
Schmidt,1977).

ε is asymmetrically distributed. We have its mean as

E[ε] =
σ(φ(μ

σ
)− φ(B−μ

σ
)) + μΦ(μ

σ
)− μ(1− Φ(B−μ

σ
))

Φ(B−μ
σu
)− Φ(−μ

σu
)

(10)

More importantly, we have the following conditional distribution of u given ε:

fu|ε(x|y) =
1
σ∗
φ(x−μ∗

σ∗
)

Φ(B−μ∗
σ∗
)− Φ(−μ∗

σ∗
)
1[0,B](x), (11)

where

μ∗ =
μσ2v − yσ2u

σ2
(12)

σ∗ =
σuσv
σ

(13)

Not surprisingly, the conditional distribution of u given ε is also doubly truncated
normal with mean and variance that depend on the distribution of v as well as u.
Then we have conditional mean of u given ε,

E[u|ε = y] = μ∗ + σ∗
φ(−μ∗

σ∗
)− φ(B−μ∗

σ∗
)

Φ(B−μ∗
σ∗
)− Φ(−μ∗

σ∗
)
. (14)
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If we let B →∞, this collapses to the conditional mean from the Normal-Truncated
Normal Model,

E[u|ε = y] = μ∗ + σ∗Φ(
μ∗
σ∗
)−1φ(

μ∗
σ∗
). (15)

Note that individual inefficiency ui for production unit i, as part of the composed
error term εi, is not directly estimable. But we are able to estimate εi. Under our
assumption of independence of ui from uj, ∀j 6= i, from vj, ∀j, and from the regressors,
E[ui|εi = ε̂i] is the best predictor of ui given available information.

2.2 Truncated Half Normal Model

Setting μ = 0, we obtain the results for the normal-truncated half normal model. The
marginal distribution for ε is

fε(x) = [Φ(
B

σu
)− 1/2]−1 · 1

σ
φ(

x

σ
) ·

[Φ(
(B + x)λ+Bλ−1

σ
)− Φ(

xλ

σ
)], (16)

where σ and λ are defined in (7), and we can also use γ-parameterization defined in
(8).
The mean of ε is

Eε =
σ( 1√

2π
− φ(B

σ
))

Φ( B
σu
)− 1

2

(17)

And the conditional mean of the efficiency term is given by

E[u|ε = y] = μ∗ + σ∗
φ(−μ∗

σ∗
)− φ(B−μ∗

σ∗
)

Φ(B−μ∗
σ∗
)− Φ(−μ∗

σ∗
)
, (18)

where σ∗ is the same in (13) and

μ∗ =
−yσ2u
σ2

. (19)

2.3 Truncated Exponential Model

We next assume u has a truncated exponential distribution with the following density
function,

fu(x) =
1

σu(1− e−B/σu)
e−

x
σu 1[0,B](x). (20)
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Using similar derivations as above we can derive the marginal distribution of ε,

fε(x) =
e

y
σu
+

σ2v
2σ2u [Φ(B+y

σv
+ σv

σu
)− Φ( y

σv
+ σv

σu
)]

σu(1− e−σu/B)
. (21)

The conditional distribution of u given ε is

fu|ε(x|y) =
1
σv
φ(x−μ∗

σv
)

Φ(B−μ∗
σv
)− Φ(−μ∗

σv
)
1[0,B](x), (22)

where

μ∗ = −y −
σ2v
σu

. (23)

The conditional mean of u is

E[u|ε = y] = μ∗ + σv
φ(−μ∗

σv
)− φ(B−μ∗

σv
)

Φ(B−μ∗
σv
)− Φ(−μ∗

σv
)
. (24)

If B =∞, this collapses to the conditional mean from the Normal-Exponential model,

E[u|ε = y] = μ∗ + σvΦ(
μ∗
σv
)−1φ(

μ∗
σv
). (25)

2.4 The Skewness problem

A common and important methodological problem encountered when dealing with
empirical implementation of the stochastic frontier model is that the residuals may
be skewed in the wrong direction. In the case of the stochastic production frontier,
the residuals may be positively skewed even though the composed error term v − u
should display negative skewness, in keeping with u0s positive skewness. This problem
has important consequences for the interpretation of the skewness of the error term
as a measure of technological inefficiency. It may imply that there had been an
unfortunate sampling from an inefficiency distribution that has a negative population
skewness. It may also be that positive skewness of the composed error indicates that
there are no inefficiencies and that all firms are “super efficient”, a term first used by
Green and Mayes (1991). The later would suggest setting the variance of inefficiency
term at zero, which would have problematic impacts on estimation and on inference.
Some authors have considered one-sided distributions of inefficiencies that can have
negative or positive skew (Johnson et al., 1994; Carree, 2002). However, the negative
skewness is also problematic since it implies that only a very small fraction of the
firms attain a level of productivity close to the frontier.
The skewness of each distribution we consider in our family of doubly truncated

stochastic production frontiers can be obtained from cumulants based on the moment
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generating function. The skewness of the doubly truncated normal distribution is given
by

s = − 1
V 3/2 · {2

Ã
φ(

B−μ∗
σ∗

)−φ(−μ∗
σ∗
)

Φ(
B−μ∗
σ∗

)−Φ(−μ∗
σ∗
)

!3
+

3

Ã
B−μ∗
σ∗

φ(B−μ∗
σ∗
)

Φ(B−μ∗
σ∗
)− Φ(−μ∗

σ∗
)
− 3μ∗

σ∗

φ(−μ∗
σ∗
)

Φ(B−μ∗
σ∗
)− Φ(−μ∗

σ∗
)
− 1
!

·
Ã
φ(B−μ∗

σ∗
)− φ(−μ∗

σ∗
)

Φ(B−μ∗
σ∗
)− Φ(−μ∗

σ∗
)

!
+
³
B−μ∗
σ∗

´2Ã φ(
B−μ∗
σ∗

)

Φ(
B−μ∗
σ∗

)−Φ(−μ∗
σ∗
)

!

−μ2∗
σ2∗

Ã
φ(−μ∗

σ∗
)

Φ(B−μ∗
σ∗
)− Φ(−μ∗

σ∗
)

!
} (26)

where

V = 1−
Ãµ

B − μ∗
σ∗

¶
φ(

B−μ∗
σ∗

)

Φ(
B−μ∗
σ∗

)−Φ(−μ∗
σ∗
)
+

μ∗
σ∗

φ(−μ∗
σ∗
)

Φ(B−μ∗
σ∗
)− Φ(−μ∗

σ∗
)

!

−
Ã
φ(B−μ∗

σ∗
)− φ(−μ∗

σ∗
)

Φ(B−μ∗
σ∗
)− Φ(−μ∗

σ∗
)

!2
(27)

is the second central moment of doubly truncated distribution , and μ∗ and σ∗ are
defined in (12) and (13), respectively.
Letting μ = 0 we obtain the skewness of the truncated half-normal distribution,

which is the same as the expression (26) with only difference that μ∗ is given by the
expression in (19).
In case of truncated exponential model, by noting that the conditional distribution

of u given ε is also the doubly truncated normal distribution, we the conditional
skewness is
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s = − 1
V 3/2

· {2
Ã

φ(
B−μ∗
συ

)−φ(− μ∗
συ
)

Φ(
B−μ∗
συ

)−Φ(− μ∗
συ
)

!3
+

3

Ã B−μ∗
συ

φ(B−μ∗
συ
)

Φ(B−μ∗
συ
)− Φ(− μ∗

συ
)
− 3μ∗

συ

φ(− μ∗
συ
)

Φ(B−μ∗
συ
)− Φ(− μ∗

συ
)
− 1
!

·
Ã
φ(B−μ∗

συ
)− φ(− μ∗

συ
)

Φ(B−μ∗
συ
)− Φ(− μ∗

συ
)

!
+
³
B−μ∗
συ

´2Ã φ(
B−μ∗
συ

)

Φ(
B−μ∗
συ

)−Φ(− μ∗
συ
)

!

− μ2∗
σ2
υ

Ã
φ(− μ∗

συ
)

Φ(B−μ∗
συ
)− Φ(− μ∗

συ
)

!
} (28)

where

μ∗ = −y −
σ2υ
σu

.

which is the expression in (23)
Using the asymptotic expansion of the Mill’s ratio for B = ∞, we get s = 2

which is the skewness of the exponential distribution. Note that in all three cases
we have a positively skewed conditional distribution of u given ε and thus our new
bounded inefficiency model shares this property with the classical stochastic frontier
model of Aigner et al. (1977). Of course when the positively skewed inefficiency
component is subtracted from the random error the composed error of the stochastic
frontier is negatively skewed. Findings of positive sample skewness of the residuals
of the composed error remains a finite sample issue. However, truncation of the right
tail of the positively skewed inefficiency distribution reduces the level of skewness
and thus the extent to which significant skewness can be revealed in samples whose
inefficiencies are bounded3. We have examined this in more depth in a series of Monte
Carlo simulations which suggest that the finding in many empirical studies using the
standard one-sided unbounded inefficiency distribution of incorrect skewness may
well be because the underlying distribution of inefficiency is in fact bounded. When
the distribution of the one-sided inefficiency error is bounded, then standard tests
for the absence of skewness are often rejected unless the variance in the one-sided

3It is one thing that the OLS residuals exhibit “wrong skewness”(positive skewness) and quite
another that MLE estimates of λ be negative or zero. In fact, since our MLE usually uses con-
strained minimization, the λ estimate usually cannot be negative. We used both constrained and
unconstrained minimization in our simulations below. When there is positive skewness, we find
that MLE can still give reasonable estimates of λ as well as other model parameters. Moreover,
when OLS residuals exhibits negative skewness, MLE may also give negative or close-to-zero values
to λ.
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error is large relative to the variance of the stochastic error (large λ). Thus weak
identifiability of sample skewness is a property of samples in which the inefficiency
distribution is bounded. We conjecture that this is the major reason many researchers
have concluded the stochastic frontier model may not properly specify the inefficiency
distributions in many empirical settings since the standard inefficiency distributions
specified in the traditional stochastic frontier composed error are not bounded4.

2.5 Panel Data

In the same spirit as Schmidt and Sickles (1984) and Cornwell, et al. (1990) we can
specify a model for panel data:

yit = A+
KX
k=1

αkxit,k + εit (29)

where
εit = vit − uit. (30)

We keep the assumption that the inefficiency components uit are iid and are in-
dependent from the regressors, and we assume uit to have upper bound Bt for each
t. We may set Bt to be time-invariant. However, it is certainly more plausible to
assume otherwise, as the market or industry may well become more or less forgiving
as time goes by, especially in settings in which market reforms are being introduced
or firms are adjusting to a phased transition from regulation to deregulation.
There are two possible extensions to this specification. First, we may drop the

assumption that u is independent from the regressors. In the panel data setting, this
assumption is more than necessary for the identification of the model. In fact, here
we treat panel data merely as a collection of cross-section data in the chronological
order. The advantage of panel data is not exploited. Second, we may certainly give
more structure to Bt. For example, Bt could be specified as Bt =

Pm
i=1 βift for

some appropriate class of functions (ft). We leave these two possibilities for future
investigations.

3 Estimation

With the distribution of the error term fully specified, maximum likelihood is a natural
estimator to use in these models. Here we list the log-likelihood functions of these

4We thank C. A. Knox Lovell for his observation, which he made at the Tenth EuropeanWorkshop
on Efficiency and Productivity, Lille, France, June, 2007, that there was potential for our bounded
frontier to address the skewness problem inherent in the use of the Aigner, Lovell and Schmidt
stochastic frontier model
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models. Note that in practice we need also provide analytic form of the gradient of the
log likelihood function. The gradients are complicated in form but straightforward to
derive and we omit them here.
The log-likelihood function for the doubly truncated normal model with λ para-

meterization is given by

logL = −n log
∙
Φ(

B − μ

σu(σ, λ)
)− Φ(

−μ
σu(σ, λ)

)

¸
−n log σ − n

2
log(2π)−

nX
i=1

(εi + μ)2

2σ2

+
nX
i=1

log{Φ((B + εi)λ+ (B − μ)λ−1

σ
)

−Φ(εiλ− μλ−1

σ
)}, (31)

where εi = y −A−
P

xi,kαk and

σu(σ, λ) =
σq

1 + 1/λ2
. (32)

It is easy to get logL in γ-parameterization. We can substitute λ in (31) with

λ(γ) =

r
γ

1− γ
. (33)

The log-likelihood function for the truncated half normal model is

logL = −n log(Φ( B

σu(σ, λ)
)− 1

2
)

−n log σ − n

2
log(2π)−

nX
i=1

ε2i
2σ2

+
nX
i=1

log{Φ((B + εi)λ+Bλ−1

σ
)− Φ(

εiλ

σ
)}, (34)

where εi = y − A−
P

xi,kαk and σu(σ, λ) is defined in (32). Again, substitute λ in
(34) with λ(γ) in (33), we get logL of γ-parameterization.
Finally, the log-likelihood function for the truncated exponential model is

logL = −n log σu − n log(1− e−σu/B)

+
nσ2v
2σ2u

+
1

σu

nX
i=1

εi (35)

+
nX
i=1

log[Φ(
B + εi
σv

+
σv
σu
)− Φ(

εi
σv
+

σv
σu
)], (36)
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where εi = y −A−
P

xi,kαk.
After estimating the model, we can estimate the composed error term εi:

ε̂i = yi − Â−
X

xi,kα̂k, i = 1, · · · , n. (37)

From this we can estimate the inefficiency term ui using the formula for E[u|ε = ε̂i]
in (14), (18), and (24) for doubly truncated, truncated half normal, and truncated
exponential models, respectively.

4 Monte Carlo Results

To examine the finite sample performance of the MLE estimators we run a series of
Monte Carlo experiments for the standard cross-sectional stochastic frontier model.
The data generating process is (1) and (2) with A = 0 and K = 2 (two regressors
and no constant term). Throughout we set α1 = 0.6, α2 = 0.5. We set σu = 1.0 in
truncated half normal model and doubly truncated normal model, and σu = 0.3 in
truncated exponential model. To examine how the noise level (σv) affects the quality
of estimation, we vary σv from 0.1, 0.2, to 0.5. In the other dimension, we change
the inefficiency bound from 0.8, 1.0, to 1.2, to examine its impact on estimation.
For both truncated half normal and doubly truncated normal models we use the γ-
parameterization, and thus the parameters to be estimated are σ and γ as well as the
production parameters.
Table 1 and 2 reports results from the truncated half normal model with a sample

size of 200 and 500, respectively. The results from these two tables differ only in
quantitative manner.
The first important conclusion that can be drawn from Table 1 and 2 is that the

MLE estimators for technology parameters, α1 and α2, are accurate. As noise level
increases, the MSE of these estimators only slightly increases. The second important
observation is that the estimator for the inefficiency bound is has small MSE when the
noise level is mild. When noise level is high, as when σv = 0.5, B̂ becomes inaccurate.
For the distribution parameters, σ̂ displays a significantly upward bias, a large

MSE, and sensitivity to the noise level. The problem is alleviated somewhat when
the inefficiency bound B becomes higher. In all cases γ̂ is unbiased and has small
MSE.
We now look at the doubly truncated normal model. Table 3 and 4 reports Monte

Carlo results with a sample size of 200 and 500, respectively. At the sample size 200,
the technology parameter estimates α̂1 and α̂2 are downward biased and have large
MSE. Interestingly, they become less biased and have smaller MSE’s as the noise level
σv increases. The inefficiency bound estimate B̂ is also inaccurate and sensitive to
the noise level. The estimation for distribution parameters, μ, σ, and γ, are poor,
especially when B is small. This indicates that when sample size is small, the effects
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Table 1: Monte Carlo results for Truncated Half Normal model. The number of
repetitions M = 1000. Sample size N = 200.

B = 0.8 B = 1.0 B = 1.2

True AVE MSE AVE MSE AVE MSE

σ̂ 1.005 1.461 0.996 1.248 0.460 1.151 0.273
γ̂ 0.990 0.988 0.001 0.987 0.004 0.980 0.011

σv = 0.1 B̂ 0.806 0.004 1.001 0.008 1.188 0.020
α̂1 0.6 0.600 0.002 0.600 0.004 0.595 0.007
α̂2 0.5 0.499 0.002 0.498 0.003 0.493 0.005

σ̂ 1.020 1.304 0.645 1.380 0.774 1.284 0.522
γ̂ 0.962 0.946 0.004 0.954 0.005 0.961 0.001

σv = 0.2 B̂ 0.803 0.036 1.019 0.020 1.220 0.015
α̂1 0.6 0.598 0.004 0.596 0.005 0.602 0.007
α̂2 0.5 0.493 0.004 0.502 0.004 0.500 0.005

σ̂ 1.118 1.370 0.495 1.423 0.598 1.532 0.859
γ̂ 0.800 0.827 0.010 0.826 0.013 0.823 0.021

σv = 0.5 B̂ 0.901 0.402 1.132 0.418 1.310 0.417
α̂1 0.6 0.596 0.017 0.600 0.017 0.599 0.019
α̂2 0.5 0.502 0.015 0.502 0.016 0.497 0.018
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Table 2: Monte Carlo results for Truncated Half Normal model. The number of
repetitions M = 1000. Sample size N = 500.

B = 0.8 B = 1.0 B = 1.2

True AVE MSE AVE MSE AVE MSE

σ̂ 1.005 1.244 0.477 1.112 0.136 1.046 0.050
γ̂ 0.990 0.990 0.000 0.990 0.000 0.990 0.000

σv = 0.1 B̂ 0.804 0.001 1.000 0.001 1.202 0.002
α̂1 0.6 0.600 0.001 0.601 0.001 0.601 0.001
α̂2 0.5 0.500 0.000 0.500 0.001 0.499 0.001
σ̂ 1.020 1.201 0.404 1.206 0.315 1.130 0.170
γ̂ 0.962 0.949 0.002 0.959 0.001 0.961 0.001

σv = 0.2 B̂ 0.804 0.011 1.007 0.006 1.208 0.005
α̂1 0.6 0.597 0.001 0.598 0.002 0.603 0.002
α̂2 0.5 0.499 0.001 0.502 0.001 0.498 0.001
σ̂ 1.118 1.217 0.140 1.273 0.257 1.320 0.349
γ̂ 0.800 0.809 0.007 0.804 0.011 0.800 0.017

σv = 0.5 B̂ 0.841 0.187 1.067 0.239 1.290 0.250
α̂1 0.6 0.598 0.006 0.598 0.007 0.595 0.007
α̂2 0.5 0.498 0.006 0.495 0.006 0.497 0.005
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Table 3: Monte Carlo results for Doubly Truncated Normal model. The number of
repetitions M = 1000. Sample size N = 200.

B = 0.8 B = 1.0 B = 1.2

True AVE MSE AVE MSE AVE MSE

σ̂ 1.005 0.760 0.351 0.811 0.270 0.789 0.236
γ̂ 0.990 0.856 0.125 0.896 0.089 0.867 0.120

σv = 0.1 μ̂ 0 0.295 0.325 0.229 0.185 0.166 0.078
B̂ 0.732 0.088 0.943 0.098 1.081 0.182
α̂1 0.6 0.527 0.047 0.550 0.035 0.534 0.046
α̂2 0.5 0.443 0.033 0.459 0.024 0.440 0.032
σ̂ 1.020 0.763 0.274 0.776 0.276 0.814 0.250
γ̂ 0.962 0.830 0.091 0.836 0.098 0.849 0.096

σv = 0.2 μ̂ 0 0.619 1.273 0.352 0.422 0.264 0.221
B̂ 0.806 0.136 0.990 0.156 1.170 0.195
α̂1 0.6 0.559 0.034 0.551 0.040 0.551 0.041
α̂2 0.5 0.470 0.025 0.462 0.028 0.460 0.028
σ̂ 1.118 1.102 0.145 1.087 0.162 1.096 0.231
γ̂ 0.800 0.778 0.022 0.759 0.033 0.737 0.051

σv = 0.5 μ̂ 0 0.917 2.594 0.940 2.485 0.887 2.275
B̂ 0.901 0.662 1.110 0.711 1.337 0.727
α̂1 0.6 0.612 0.023 0.612 0.028 0.602 0.031
α̂2 0.5 0.515 0.020 0.511 0.025 0.511 0.029

of these distribution parameters are difficult to be disentangled from that of B. At
the sample size of 500, all problems above disappear except that of μ. μ remains
inaccurate and sensitive to the noise level.
Table 5 and 6 show the results for truncated exponential model with a sample size

of 200 and 500, respectively. As with the truncated half normal case, the technology
parameter estimates, α̂1 and α̂2, are accurate, and the inefficiency bound estimate,
B̂, is accurate when the noise level is mild. For the distribution parameters, when the
noise level is low (σv = 0.1), we observe only a slight upward bias in σ̂u and downward
bias in σ̂v. When the noise level is medium or high, however, the performance of σ̂u
is rather poor. The more so, when the inefficiency bound B is also low.
As expected, the finite sample problem with σ̂u is lessened when we have a larger

sample size 500. Table 6 shows that σ̂u is acceptable when the noise level is medium
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Table 4: Monte Carlo results for Doubly Truncated Normal model. The number of
repetitions M = 1000. Sample size N = 500.

B = 0.8 B = 1.0 B = 1.2

True AVE MSE AVE MSE AVE MSE

σ̂ 1.005 0.812 0.192 0.836 0.123 0.888 0.075
γ̂ 0.990 0.974 0.006 0.983 0.002 0.985 0.003

σv = 0.1 μ̂ 0 0.205 0.095 0.187 0.076 0.160 0.062
B̂ 0.828 0.008 1.028 0.006 1.220 0.008
α̂1 0.6 0.599 0.003 0.602 0.001 0.600 0.002
α̂2 0.5 0.504 0.002 0.505 0.001 0.503 0.001
σ̂ 1.020 0.822 0.158 0.833 0.148 0.870 0.110
γ̂ 0.962 0.901 0.018 0.921 0.013 0.940 0.007

σv = 0.2 μ̂ 0 0.396 0.433 0.258 0.161 0.233 0.127
B̂ 0.869 0.043 1.076 0.042 1.276 0.040
α̂1 0.6 0.606 0.003 0.603 0.005 0.606 0.004
α̂2 0.5 0.508 0.003 0.509 0.004 0.509 0.003
σ̂ 1.118 1.058 0.051 1.060 0.085 1.044 0.094
γ̂ 0.800 0.757 0.015 0.743 0.023 0.726 0.030

σv = 0.5 μ̂ 0 0.698 1.418 0.713 1.366 0.628 1.054
B̂ 0.838 0.246 1.089 0.292 1.353 0.408
α̂1 0.6 0.606 0.007 0.613 0.008 0.614 0.007
α̂2 0.5 0.512 0.007 0.516 0.008 0.517 0.009
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Table 5: Monte Carlo results for Truncated Exponential model. The number of
repetitions M = 1000. Sample size N = 200.

B = 0.8 B = 1.0 B = 1.2

True AVE MSE AVE MSE AVE MSE

σ̂u 0.3 0.3192 0.0053 0.3127 0.0029 0.3103 0.0019
σ̂v 0.1 0.0950 0.0003 0.0952 0.0003 0.0956 0.0003

σv = 0.1 B̂ 0.8063 0.0046 0.9928 0.0074 1.1847 0.0125
α̂1 0.6 0.6010 0.0010 0.5994 0.0012 0.5989 0.0012
α̂2 0.5 0.5011 0.0007 0.5015 0.0008 0.5020 0.0008
σ̂u 0.3 0.9429 20.7714 0.3792 0.2352 0.3557 0.5932
σ̂v 0.2 0.1912 0.0010 0.1911 0.0009 0.1926 0.0008

σv = 0.2 B̂ 0.8376 0.0344 1.0311 0.0375 1.2145 0.0420
α̂1 0.6 0.6032 0.0025 0.5988 0.0026 0.6005 0.003
α̂2 0.5 0.5039 0.0019 0.5071 0.0021 0.5033 0.0020
σ̂u 0.3 3.1291 79.5727 2.7975 57.8804 2.1373 44.1386
σ̂v 0.5 0.4652 0.0054 0.4614 0.0062 0.4656 0.0059

σv = 0.5 B̂ 1.0297 0.4266 1.2061 0.4327 1.3278 0.4284
α̂1 0.6 0.6260 0.0118 0.6226 0.0111 0.6260 0.0121
α̂2 0.5 0.5175 0.0093 0.5274 0.0093 0.5203 0.0100
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Table 6: Monte Carlo results for Truncated Exponential model. The number of
repetitions M = 1000. Sample size N = 500.

B = 0.8 B = 1.0 B = 1.2

True AVE MSE AVE MSE AVE MSE

σ̂u 0.3 0.3054 0.0016 0.3041 0.0009 0.3034 0.0006
σ̂v 0.1 0.0985 0.0001 0.0980 0.0001 0.0979 0.0001

σv = 0.1 B̂ 0.8017 0.0018 0.9970 0.0029 1.1929 0.0052
α̂1 0.6 0.5999 0.0005 0.6001 0.0005 0.6003 0.0006
α̂2 0.5 0.5005 0.0004 0.5002 0.0004 0.5004 0.0004
σ̂u 0.3 0.3481 0.0592 0.3196 0.0059 0.3093 0.0022
σ̂v 0.2 0.1960 0.0004 0.1956 0.0004 0.1974 0.0003

σv = 0.2 B̂ 0.8245 0.0153 1.0193 0.0130 1.2155 0.0207
α̂1 0.6 0.6027 0.0012 0.6014 0.0012 0.5992 0.001
α̂2 0.5 0.5012 0.0009 0.5011 0.0009 0.5023 0.0009
σ̂u 0.3 1.3566 9.7584 1.1411 5.2664 0.7721 2.2743
σ̂v 0.5 0.4826 0.0022 0.4829 0.0023 0.4872 0.0023

σv = 0.5 B̂ 0.9572 0.3130 1.1645 0.3353 1.3228 0.3847
α̂1 0.6 0.6052 0.0058 0.6108 0.0061 0.6095 0.0054
α̂2 0.5 0.5162 0.0051 0.5160 0.0051 0.5108 0.0048

(σv = 0.2). When the noise level is high, however, the problem remains. Other
parameter estimates exhibit high finite sample qualities.

5 Efficiency Analysis of Banking Industry

5.1 Empirical Model and Data

We now apply the bounded inefficiency (BIE) model to an analysis of the US banking
industry, which underwent a series of deregulatory reforms in the early 1980’s. Here
we extend our model to the pane setting and, following Adams, Berger, and Sickles
(1999) and Kneip, Sickles, and Song(2005), we specify a Cobb-Douglas stochastic
distance frontier model as follows,

Yit = Y ∗it
0γ +X 0

itβ + vit − uit, (38)
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where Yit is real estate loans; Xit includes certificate of deposit (CD), demand deposit
(DD), retail time/savings deposit (OD), labor (lab), capital (cap), and purchased
funds (purf); and Y ∗it includes commercial and industrial loans/real estate loans (ciln)
and installment loans/real estate loans (inln). All Xit and Y ∗it are transformed by
− log(·). We assume (vit) are iid across i and t, and for each t, uit has a upper bound
Bt. Then we can treat this model as a generic panel data bounded inefficiency model
as discussed in Section 2.5. Once the individual effects uit are estimated, technical
efficiency for a particular firm at time t is calculated as TE = exp(uit−max1≤j≤N ujt).
We use US commercial banking panel data from 1984 through 1995 in limited

branching regulatory environment. The data are taken from the Report of Condition
and Income (Call Report) and the FDIC Summary of Deposits. The data set include
8004 observations for 667 banks. For more detailed discussion, readers are referred
to the Appendix of (Jayasiriya, 2000).
We compare the BIE estimator to the “Within” estimator (Schmidt and Sickles,

1984), CSSW (Cornwell, Schmidt, and Sickles, 1990), KSS (Kneip, Sickles, and Song,
2005), and BC (Battese and Coelli, 1992).

5.2 Results

Table 7 compares the parameter estimates of the bounded inefficiency (BIE) with
that of “Within”, CSS, KSS, and BC. The BIE estimates are generally different from
previous results. The parameter estimates for DD (direct demand) and cap (capital)
are markedly larger than previously estimated, while the estimate for purf (purchased
funds) is much lower than previous results.
An even more striking difference is in the average efficiency score in 12 years.

The BIE average efficiency is significantly higher than what previous models obtains.
This is not unexpected, however, since the existence of inefficiency bound expands
the domain of the noise component v, hence attributes more of “very inefficient” firms
to bad measurement and other unaccountable factors.
Of course, for time-varying efficiency models such as CSS, KSS, BC, and BIE,

the average efficiency changes over time. This is illustrated in Figure 1. While it is
obvious that BIE yields a higher average efficiency curve than the other models do,
it traces a similar upward trend in the twelve years in terms of average efficiency.
We also look at the efficiency ranking of firms. Table 8 tabulates the Spearman rank
correlations among different models. It is clear that the BIE efficiency ranking is in
agreement with previous estimations, especially with CSSW.

We next look at the performance (relative to the best) of the least efficient bank
over the years. In Figure 2, the curves labeled “BIE”, “CSSW”, and “KSS” are the
minimum (among all banks) efficiency scores calculated from each model for each
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Table 7: Comparisons of Various Estimators. MLE estimates and standard deviations (in
parentheses) for each model parameters from competing models (Within, CSSW, KSS, BC, BIE).

CD: certificate of deposit; DD: demand deposit; OD: retail time/savings deposit; lab: labor; cap:

capital; purf: purchased funds; ATE: Average Technical Efficiency.

Within CSSW KSS BC BIE

CD -0.0351 (0.0047) -0.0099 (0.0032) -0.0019 (0.0019) -0.0320 (0.0044) -0.0924 (0.0050)

DD -0.0904 (0.0160) -0.0813 (0.0138) -0.0193 (0.0109) -0.0351 (0.0138) -0.1314 (0.0115)

OD -0.1525 (0.0097) -0.1245 (0.0071) -0.0306 (0.0201) -0.1474 (0.0090) -0.1322 (0.0146)

lab -0.1786 (0.0171) -0.1508 (0.0146) -0.0913 (0.0095) -0.1557 (0.0147) -0.1158 (0.0132)

cap -0.0427 (0.0054) -0.0458 (0.0054) -0.0250 (0.0052) -0.0502 (0.0048) -0.1157 (0.0052)

purf -0.5855 (0.0215) -0.5263 (0.0195) -0.5751 (0.0299) -0.6243 (0.0195) -0.4024 (0.0163)

ciln 0.1603 (0.0045) 0.1470 (0.0037) 0.1193 (0.0030) 0.1601 (0.0042) 0.2818 (0.0043)

inln 0.3712 (0.0061) 0.3516 (0.0056) 0.3243 (0.0049) 0.3622 (0.0055) 0.2739 (0.0058)

time 0.0145 (0.0009) . . 0.0016 (0.0013) .

ATE 0.4389 0.6230 0.6027 0.6011 0.8027

Table 8: Spearman Rank Correlations of Efficiencies

Within CSSW KSS BC BIE

Within 1 · · · ·
CSSW 0.8743 1 · · ·
KSS 0.7667 0.8974 1 · ·
BC 0.9854 0.8785 0.7937 1 ·
BIE 0.7607 0.8493 0.7686 0.7585 1

19



year. We may call these curves “minimum efficiency curves”. And the curve labeled
“BIE Bound” traces the inefficiency bound calculated from the BIE model over the
years, that is, B̂t. It is worth emphasizing that the inefficiency bound is a statistical
parameter that clearly sets the minimum level of inefficiency, while the points on
the minimum efficiency curves are efficiency scores calculated for particular (worst
performed) banks. So the curves “BIE” and “BIE Bound” differ.
A downward trend is observed for the BIE minimum efficiency curve. A similar

trend, although less marked, is observed in the CSSWminimum efficiency curve. The
inefficiency bound is slightly below the minimum efficiency curve for BIE and the two
move in tandem. Figures 1 and 2 display an interesting finding: on one hand, an
upward trend is observed for the average efficiency of the industry, presumably bene-
fiting from the deregulations in the 1980s; on the other hand, the industry appears to
be more “tolerant” of less efficient banks. Possibly, these banks have a characteristic
that we have not properly controlled for and we are currently examining this issue.
Given the recent experiences in the credit markets due in part to the poor oversight
lending authorities gave in their mortgage and other lending activities, our results
also may be indicative of a backsliding in the toleration of inefficiency that could
have contributed to problems the financial services industry faces today.

6 Conclusions

In this paper we have introduced a series of parametric stochastic frontier models that
have upper (lower) bounds on the inefficiency (efficiency). The model parameters can
be estimated by maximum likelihood, including the inefficiency bound. The models
are easily applicable for both cross-section and panel data setting. In the panel data
setting, we set the inefficiency bound to be varying over time, hence contributing
another time-varying efficiency model to the literature. We have examined the fi-
nite sample performance of the maximum likelihood estimator in the cross-sectional
setting. An empirical analysis of US banking industry using the new model yields
different estimates for some technology parameters and a considerable higher average
efficiency score than previous models, and because the efficiencies are higher, one
that may more easily be defended on economic grounds than the substantially lower
efficiencies predicted by the classical stochastic frontier model.
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