1. Model Selection, Estimation, and Diagnostics. In this exercise we use the dataset volseries.csv, which contains three time series variables: x and y.

(1) Obtain the correlograms (ACF and PACF) of x, y, x^2, and y^2.

(2) Estimate an ARCH(1) model for x, which is given by

$$x_t = \sigma_t \varepsilon_t,$$

where ε_t is iid(0,1) and σ_t is the conditional standard deviation (volatility) that satisfies,

$$\sigma_t^2 = c + ax_{t-1}^2.$$

(EViews tip: Use menu “Object” → “New Object”; In the Equation Specification, choose ARCH in the menu “Method” in “Estimation settings”. In the “Mean Equation Specification”, type “x”. In the “ARCH Specification”, choose Order ARCH to be 1 and GARCH 0.)

(3) Diagnostics. To check if a ARCH/GARCH model is adequate, we should look at the estimated standardized residual,

$$\hat{\varepsilon}_t = \frac{x_t}{\hat{\sigma}_t}.$$

If our model is right, both ε_t and ε_t^2 should be white noise. In particular, if the latter is serially correlated, then our model does not fully capture the volatility clustering in x. If this is the case, we should improve our model by using more lags or use GARCH.

Of course, EViews has estimated $\hat{\varepsilon}_t$ for you. You only need to check the correlograms of them.

(EViews tip: Use menu “View” → “Residual Tests”, choose “Correlogram - Q Statistic”
to test whether $\hat{\varepsilon}_t$ is white noise and choose “Correlogram Squared Residuals” to test whether $\hat{\varepsilon}_t^2$ is white noise.)

(3) You may find that the ARCH(1) is not adequate for x. Try estimating an ARCH(2) model for x and perform diagnostics for this new model.

(4) Estimate a GARCH(1,1) model for y. Perform model diagnostics.

(5) Plot conditional volatility. In financial applications, the conditional volatility σ_t in an ARCH/GARCH model usually describes “risks” perceived by investors. Of course, EViews has also estimated σ_t for you. Use menu “View” → “Conditional SD Graph”.

(6) One-step-ahead forecast of conditional variance σ_{n+1}^2. Recall from the lecture that, for GARCH(1,1) models,

$$\hat{\sigma}_{n+1}^2 = \hat{c} + \hat{\alpha}y_n^2 + \hat{\beta}\hat{\sigma}_n^2.$$

(EViews tip: You can obtain $\hat{\sigma}_t^2$ by using menu “Proc”→“Make GARCH Variance Series”.

(7) Make a two-step-ahead forecast of conditional variance of y.

2. **Modeling Volatility Clustering of IBM Stock Return.** In this exercise we use the dataset ibm.csv, which contains daily returns on IBM stock and S&P 500 Index.

(1) Estimate the following model for ibm,

$$ibm_t = \beta_0 + u_t, \quad (1)$$

where

$$u_t \sim \text{GARCH}(1,1).$$

This is,

$$u_t = \sigma_t \varepsilon_t, \quad (2)$$
where ε_t is iid(0,1) and σ_t satisfies,

$$\sigma_t^2 = c + au_{t-1}^2 + b\sigma_{t-1}^2. \tag{3}$$

The reason why we add a constant term β_0 is that stocks normally yield a nonzero return in the long run. Notice that

$$\beta_0 = \mathbb{E}(ibm_t|ibm_{t-1}, ibm_{t-2}, \ldots).$$

Hence Equation (1) is usually called the “equation of conditional mean” and Equation (2) and (3) are called the “equation of conditional variance”.

If we suspect that ibm_t may be serially correlated, we improve (1) by adding AR and MA terms. For example, we may write

$$ibm_t = \beta_0 + \beta_1 ibm_{t-1} + \alpha u_{t-1} + u_t, \tag{4}$$

where $u_t \sim \text{GARCH}(1,1)$. This model is typically called ARMA(1,1)-GARCH(1,1). For now, we concentrate on the model in (1), since it is well known the returns on “star” stocks such as IBM are not serially correlated.

(EViews tip: To include the constant β_0, the only thing you need to do is to type “ibm c” in the “Mean Equation Specification”. To include AR(1) and MA(1) terms, simply type “ibm c ar(1) ma(1)”.)

(2) Perform model diagnostics. Is this model adequate?

(3) Plot conditional volatility.

(4) One-step-ahead forecast of conditional volatility. Note that, in contrast to the first problem, the residual u_t should be estimated. Eviews has done that for you. Use menu “Proc” → “Make Residual Series” and choose “ordinary”. If you choose “standardized”, you will get standardized residual $\hat{\varepsilon}_t$.
(5) Estimate an ARMA(1,1)-GARCH(1,1) model for sp500, the return on the S&P 500 Index. Perform model diagnostics.

(6) Plot conditional volatility. Compare with that of the IBM stock.