
Time Series

Junhui Qian

December 2, 2012



Outline

I Introduction
I Conditional Mean

I Serial Correlation
I AR, MA, and ARMA Models

I Conditional Variance
I Volatility Clustering
I ARCH/GARCH Models

I Time Series Regression



What is time series

I Time series is a sequential collection of random variables.

I Example: GDP, CPI, unemployment, interest rate, foreign
exchange rate, electricity usage, stock market index, EPS
(earning per share) of a stock, yearly income of a household,
etc.

I While cross-section data is a “sample” of population, time
series is a “tracking” of an chosen individual (household,
province, country, etc.).

I Time series is also called “stochastic process”. A time series
data is a “realization” of a stochastic process.



Stationary Time Series

I A stationary time series has a stable correlative structure.

I Weak stationarity.

Ext = µ, cov(xt , xt−τ ) = γτ

I Strict stationarity.

F (Xt , ...,XT ) = F (Xt+τ , ...,XT+τ ),

where F is the joint distribution function.



Nonstationary Time Series

I Trend process (Yearly GDP, population, etc.)

I Unit root process (Interest rate, foreign exchange rate, stock
prices, etc.)

I Seasonal process (Quarterly agricultural output, monthly
monetary base, quarterly GDP, quarterly EPS of a stock, etc.)
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The Illusion of Pattern
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White Noise

I Weak white noise (εt).

Eεt = 0, var(εt) = σ2, cov(εt , εt−τ ) = 0 for τ ̸= 0.

I Strong white noise.

I Gaussian (strong) white noise.

(εt) ∼ i .i .d . N(0, σ2)

I White noise is often used to characterize shocks.



Describing Serial Correlation

I Time series differ from cross-section data in that the former
usually exhibit serial correlation, ie, the conditional mean of
future variable depends on past observations.

I To examine serial correlation graphically, we use
I Scatter plots
I Correlogram (Autocorrelation function, partial Correlation)



ACF (AutoCorrelation Function)

The k-th order ACF is defined as

ρk =
cov(xt , xt−k)

var(xt)
=

γk
γ0

.



PACF (Partial AutoCorrelation Function)

The k-th order PACF is defined as the coefficient δk in the
following regression model,

xt = δ0 + δ1xt−1 + δ2xt−2 + · · ·+ δkxt−k + εt .

I PACF(k) measures the “direct” impact of xt−k on xt .

I Obviously, xt−k also intermediately affect xt through
xt−k+1, ..., xt−1.



Modeling Conditional Mean

I For stationary time series, typical models for conditional mean
are the following,

I MA (Moving Average)
I AR (Auto-Regression)
I ARMA (AutoRegressive Moving Average)

I Stochastic processes characterized by these models are called
linear processes.



AR(1) Model

A zero-mean first order AR process, xt ∼ AR(1), if

xt = axt−1 + εt ,

where (εt) is a white noise and a ∈ (−1, 1).



A Different Form

If Ext ̸= 0, an AR(1) process can be represented as

xt = c + axt−1 + εt ,

where (εt) is a white noise and a ∈ (−1, 1).



Mean and Variance

I Let µ = Ext , we have

µ =
c

1− a

I If var(εt)=σ2,

var(xt) =
σ2

1− a2
.

I What if |a| ≥ 1 ?



ACF and PACF

For an AR(1) process, it is easy to obtain

ACF(k) = ak ,

and

PACF(k) =

{
a, k = 1
0, k > 1



AR(p) Model

A zero-mean p-th order AR process, xt ∼ AR(p), if

xt = a1xt−1 + · · ·+ apxt−p + εt ,

where (εt) is a white noise and the roots of
1− a1z − · · · − apz

p = 0 are outside the unit circle.



ACF and PACF of AR(p)

For a general AR(p),

I ACF exponentially decays to zero but never reaches zero.

I And there are finite number of nonzero PACF’s.

I Question: PACF(1) = a1 ?

I AR models are suitable for those processes with “long” ACF
and “short” PACF.



Estimation of AR Models

I OLS. Consistent, robust to the distribution of (εt), but may
not be efficient.

I MLE. Most efficient under correct specification.

I Yule-Walker Equation



Yule-Walker Method

I The Yule-Walker Equation

E[xt−k(xt − a1xt−1 − · · · − apxt−p)] = 0, k = 1, ..., p

I AR(1)
γ1 − aγ0 = 0

I AR(2)

γ1 − a1γ0 − a2γ1 = 0

γ2 − a1γ1 − a2γ0 = 0



Estimation of Covariance

I We estimate γk by

γ̂k =
1

n − k

n∑
t=k+1

xtxt−k .

I As k increases, γ̂k becomes less accurate.



Forecasting Based on AR(p)

I 1-step ahead forecast

x̂n+1 = â1xn + â2xn−1 + · · ·+ âpxn−p.

I 2-step ahead forecast

x̂n+2 = â1x̂n+1 + â2xn + · · ·+ âpxn−p+1.

I
...



Forecast Error for 1-step Ahead Forecast

I If n is large, âi ≈ ai .

I Then
x̂n+1 − xn+1 ≈ εn+1

I Then
var(x̂n+1 − xn+1) ≈ var(εn+1) = σ2.



Interval Forecast

If, furthermore, we assume εt ∼ N(0, σ2), then we obtain the 95%
1-step ahead interval forecast,

[x̂n+1 − 1.96σ̂, x̂n+1 + 1.96σ̂],

where σ̂ is the estimate of σ,

σ̂2 =
1

n − 2p − 1

n∑
t=p+1

ε̂2t .



Forecast Error for 2-step Ahead Forecast

We have
x̂n+2 − xn+2 ≈ a1εn+1 + εn+2.

Hence
var(x̂n+2 − xn+2) = (1 + a21)σ

2.



MA (Moving Average) Models

A q-th order Moving Average model, x ∼ MA(p), is defined as

xt = εt + b1εt−1 + · · ·+ bqεt−q.



ACF and PACF

I It is obvious that an MA(q) process has finite number of
nonzero ACF’s.

I It can be shown that an MA(q) process has infinite number of
nonzero PACF’s.

I Hence MA models are suitable for those processes with long
PACF and short ACF.



The Estimation of MA Model

Take MA(1) as an example, xt = εt + bεt−1, we have

εt = xt − bεt−1.

I Nonlinear least square.

I MLE, assuming εt ∼ iid N(0, 1).



One-Step Ahead Forecasting Based on MA(1)

I Forecasting based on MA(1), xt = εt + bεt−1,

x̂n+1 = bεn,

where εn must be estimated.

I var(x̂n+1 − xn+1) = σ2.



Estimation of εn

One procedure for estimating εn is as follows,

1. Assume ε0 = 0,

2. ε1 = x1 − b̂ε0

3. ε2 = x2 − b̂ε1

4.
...

5. εn = xn − b̂εn−1



Two-Step Ahead Forecasting Based on MA(1)

We have
xn+2 = εn+2 + bεn+1.

It is obvious that

E(xn+2|xn+1, xn, ...) = 0.

Hence
x̂n+2 = 0.



ARMA Model

I ARMA model combines AR and MA together, the following is
an ARMA(1,1) model,

xt − axt−1 = εt + bεt−1.

I When |a| < 1, the ARMA(1,1) process is stationary.

I ARMA(p,q) is similarly defined,

xt − a1xt−1 − · · · − apxt−p = εt + b1εt−1 + · · ·+ bqεt−q.

I When the roots of 1− a1z − · · · − apz
p = 0 are outside the

unit circle, ARMA(p,q) is stationary.

I ARMA has long but rapidly declining ACF and PACF’s.



The Estimation of ARMA Model

I Yule-Walker for the AR part.

I Nonlinear least square.

I MLE



Forecasts Based on ARMA

Suppose xt ∼ ARMA(1, 1),

xt = axt−1 + εt + bεt−1.

I The one-step-ahead forecast is

x̂n+1 = âxn + b̂ε̂n,

I The variance of x̂n+1 is given by

var(x̂n+1 − xn+1) = σ2

I Homework: write the two-step-ahead forecast based on
ARMA(1,1) and calculate its variance.



The Selection of Order

I Use significant tests of parameters.
I Information criteria.

I BIC (Bayes Information Criterion)

BIC(p, q) = log

(
SSR(p, q)

n

)
+ (p + q + 1)

log n

n
,

where SSR(p, q) is the SSR of the estimated model.
I AIC (Akaike Information Criterion)

BIC(p, q) = log

(
SSR(p, q)

n

)
+ (p + q + 1)

2

n
.



Diagnostics of ARMA Models

I After estimating an ARMA model, we should check whether
the assumptions we made are valid. In particular, we should
check whether the residuals are indeed a white noise.

I Correlogram

I Ljung-Box test, also called Q test,

Q = n(n + 2)
m∑
j=1

ρ̂2j
n − j

,

where n is the sample size, ρ̂j is the jth-order sample
autocorrelation, and m is the number of lags being tested.
Under the null hypothesis (white noise), Q ∼ χ2

m.



Why do we care about conditional variance?

I For many types of time series (stock return, interest rate
variation, foreign exchange rate variation, etc.), conditional
variance is a measure of risk facing investors.

I Conditional variance is essential for interval forecast.

I Conditional variance is essential for pricing derivatives.



Some Stylized Facts of Financial Returns

I There exists little or weak linear serial correlation in asset
returns.

I The marginal distribution of asset returns is usually skewed
and peaked (heavy-tailed).

I There exists volatility clustering, ie, big changes follow big
changes.



The Log Return of IBM Stock
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The Log Return on SSECI
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The ARCH Model

I ARCH models are introduced to describe volatility clustering.

I An ARCH(p) white noise is defined as

ut = σtεt ,

where εt is an iid white noise and ht satisfies

σ2
t = c + a1u

2
t−1 + · · ·+ apu

2
t−p, (1)

where c > 0, ai ≥ 0 for all i , and
∑

i ai < 1.



Volatility Clustering

I σ2
t = var(ut |ut−1, ut−2, ...) is the conditional variance of ut ,

given information available at time t − 1.

I For example, in the following ARCH(1) model, σ2
t evolves in a

“Markovian” manner,

σ2
t = c + au2t−1, c > 0, 0 < a < 1.

I From the dynamic equation of σ2
t , we can see that big shocks

produce big volatilities ahead. Or, big changes tend to follow
big shocks.

I Conditional variance is also called conditional
heteroscedasticity, ARCH is in fact “AutoRegressive
Conditional Heteroscedasticity”.



Simulated ARCH(1) Processes
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Figure : DGP: ut = σtεt , where εt ∼ iidN(0, 1) and σ2
t = 0.01 + au2t−1.

The upper panel sets a = 0.5 and the lower panel sets a = 0.95.



Properties of ARCH Processes

(a) Let ηt = u2t − σ2
t . (ηt) is a martingale difference sequence, ie,

E(ηt |ut−1, ut−2, ...) = 0.

(b) (u2t ) is an AR(p) process.

(c) (ut) is a white noise with a (unconditional) variance of
var(ut) = c/(1− a1 − · · · − ap).

(d) The (unconditional) distribution of ut is of heavy tails, ie, the
kurtosis of ut is greater than 3.



Heavy Tail

I We can show that

Kurtosis(ut) =
Eu4t

(Eu2t )2
= 3

1− a2

1− 3a2
> 3.

I For kurtosis to be positive, a must satisfy a ∈ [0,
√
3/3).

I As a increases, the tail becomes heavier.

I When a ≥
√
3/3, the kurtosis ceases to exist.



GARCH Model

An order-(p, q) GARCH model, or GARCH(p, q), is defined as,

ut = σtεt ,

where

σ2
t = c + a1u

2
t−1 + · · ·+ apu

2
t−p + b1σ

2
t−1 + · · ·+ bqσ

2
t−q.

I c > 0, ai ≥ 0, bi ≥ 0 for all i .

I
∑max(p,q)

i=1 (ai + bi ) < 1.

I GARCH generalizes ARCH, hence its name, Generalized
ARCH.



Properties

(a) Let ηt = u2t − σ2
t . (ηt) is a martingale difference sequence, ie,

E(ηt |ut−1, ut−2, ...) = 0.

(b) (u2t ) is an ARMA(p, q) process,

u2t = c +

max(p,q)∑
i=1

(ai + bi )u
2
t−i + ηt −

q∑
i=1

biηt−i .

(c) ut is a white noise, with an (unconditional) variance of

var(ωt) = c/(1−
∑max(p,q)

i=1 (ai + bi )).

(d) The (unconditional) distribution of ωt is of heavy tails.



Estimation of ARCH and GARCH Models

I MLE

I Methods applicable to the estimation of ARMA models.



Forecasting Variance: One Step Ahead

For one-step-ahead forecast, we have

σ2
n+1 = c + a1u

2
n + · · ·+ apu

2
n−p+1 + b1σ

2
n + · · ·+ bqσ

2
n−q+1,

where (u2n, ..., ω
2
n−p+1) and (σ2

n, ..., σ
2
n−q+1) are known at time n.

Note that the one-step-ahead forecast is deterministic.



Forecasting Variance: Two Steps Ahead

For two-step-ahead forecasting, we have

σ̂2
n+2 = c + a1E(u2n+1|Fn) + a2u

2
n + · · ·+ apu

2
n−p+2 + b1σ

2
n+1 + b2σ

2
n + · · ·+ bqσ

2
n−q+2

= c + a2u
2
n + · · ·+ apu

2
n−p+2 + (a1 + b1)σ

2
n+1 + b2σ

2
n + · · ·+ bqσ

2
n−q+2.

For GARCH(1, 1) model, the n-step-ahead forecast can be written
as

σ̂2
T+n =

c(1− (a+ b)n−1)

1− a− b
+ (a+ b)n−1σ2

T+1 →
c

1− a− b
.



Estimating the Volatility

Take GARCH(1,1) as example,

1. Set σ2
0 = ĉ

1−â−b̂
.

2. σ̂2
1 = ĉ + âu20 + b̂σ2

0

3. σ̂2
2 = ĉ + âu21 + b̂σ̂2

1

...



Diagnostics of GARCH Models

1. We should check whether εt =
ut
σt

is iid.

2. We should first estimate εt ,

ε̂t =
ut
σ̂t

.

3. Test for iid
I Non-correlation: correlogram, Ljung-Box test, etc.
I If normality is assumed, test for normality
I Test on independence.



Time Series Regression Assumptions

(1) Linearity
yt = β0 + β1x1t + · · ·βkxkt + ut .

(2) (xt , yt) are jointly stationary and ergodic.

(3) No perfect collinearity.

(4) Past and contemporary exogeneity ⇔

E(ut |xt , xt−1, ...) = 0.



Ergodicity

I An ergodic time series (xt) has the property that xt and xt−k

are independent if k is large.

I If (xt) is stationary and ergodic, then a law of large number
holds,

1

n

n∑
t=1

xt → Ex a.s. .



Exogeneity in Time Series Context

I Strict exogeneity.

E(ut |X ) = E(ut |..., xt+1, xt , xt−1, ...) = 0.

I Past and Contemporary exogeneity.

E(ut |xt , xt−1, ...) = 0.



The Puzzling Exogeneity

I US GDP and East Asian Export

I Oil prices and inflation

I Monetary policy and inflation



Consistency of OLS

Under TSR Assumptions (1)-(4), the OLS estimator of the time
series regression is consistent.



Special Cases

I Autoregressive models (AR),

yt = β0 + β1yt−1 + · · ·+ βpyt−p + ut .

I Autoregressive distributed lag models (ARDL)

yt = β0 + β1yt−1 + · · ·+ βpyt−p + γ1xt−1 + · · ·+ γqxt−q + ut .

I Autoregressive models with exogenous variable (ARX)

yt = β0 + β1yt−1 + · · ·+ βpyt−p + γ1xt + · · ·+ γqxt−q+1 + ut ,

where (xt) is past and contemporary exogenous.



Beat OLS in Efficiency

I OLS is consistent, but is not efficient in general.

I ut may be serially correlated and/or heteroscedastic. In such
cases, GLS would be a better alternative.

I A simple way to account for serial correlation is to explicitly
model ut as an ARMA process:

yt = x ′β + ut ,

where ut ∼ ARMA(p, q). But OLS is no longer able to
estimate this model. Instead, nonlinear least square or MLE
should be used.



Granger Causality

I Granger causality means that if x causes y , the x is a useful
predictor of yt .

I Granger Causality Test. In the model

yt = β0 + β1yt−1 + · · ·+ βpyt−p + γ1xt−1 + · · ·+ γqxt−q + ut .

We test:
H0 : γ1 = · · · = γq = 0.

I The above test should be more appropriately called a
non-causality test. Or even more precisely, a non-predicting
test.

I Example: Monetary cause of inflation.

πt = β0+β1πt−1+· · ·+βpπt−p+γ1M1t−1+· · ·+γqM1t−q+ut .



Two Applications

I Inflation forecast and causality test.

I Estimating CAPM model.


