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What is time series

» Time series is a sequential collection of random variables.

» Example: GDP, CPI, unemployment, interest rate, foreign
exchange rate, electricity usage, stock market index, EPS
(earning per share) of a stock, yearly income of a household,
etc.

» While cross-section data is a “sample” of population, time
series is a “tracking” of an chosen individual (household,
province, country, etc.).

» Time series is also called “stochastic process”. A time series
data is a “realization” of a stochastic process.



Stationary Time Series

> A stationary time series has a stable correlative structure.

» Weak stationarity.
Ex; = p, cov(xe,Xe—r) = Yr
» Strict stationarity.
F(Xe, oo, XT) = F(Xers ooy X747),

where F is the joint distribution function.



Nonstationary Time Series

» Trend process (Yearly GDP, population, etc.)

» Unit root process (Interest rate, foreign exchange rate, stock
prices, etc.)

» Seasonal process (Quarterly agricultural output, monthly
monetary base, quarterly GDP, quarterly EPS of a stock, etc.)
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The Illusion of Pattern
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White Noise

v

Weak white noise (e¢).

Ee; =0, var(er) = 0%, cov(es,er_r) =0 for 7 # 0.

v

Strong white noise.

v

Gaussian (strong) white noise.

(e1) ~i.i.d. N(0,0?)

v

White noise is often used to characterize shocks.



Describing Serial Correlation

» Time series differ from cross-section data in that the former
usually exhibit serial correlation, ie, the conditional mean of
future variable depends on past observations.

» To examine serial correlation graphically, we use

» Scatter plots
» Correlogram (Autocorrelation function, partial Correlation)



ACF (AutoCorrelation Function)

The k-th order ACF is defined as

cov(Xe, Xe—k) _

k= .
p var(xt) Yo



PACF (Partial AutoCorrelation Function)

The k-th order PACF is defined as the coefficient d, in the
following regression model,

Xt = 00 + 01X¢—1 + 02X + - - + OpXe—k + €t

» PACF(k) measures the “direct” impact of x;_x on x;.
» Obviously, x;_x also intermediately affect x; through

Xt—k+415 -y Xt—1-



Modeling Conditional Mean

» For stationary time series, typical models for conditional mean
are the following,
» MA (Moving Average)
» AR (Auto-Regression)
» ARMA (AutoRegressive Moving Average)
» Stochastic processes characterized by these models are called
linear processes.



AR(1) Model

A zero-mean first order AR process, x; ~ AR(1), if
Xy = aX¢—1 + €,

where (£¢) is a white noise and a € (—1,1).



A Different Form

If Ex; # 0, an AR(1) process can be represented as
Xy = C + aX¢—1 + €,

where (£¢) is a white noise and a € (—1,1).



Mean and Variance

> Let u = Ex;, we have

» If var(e)=02,

> What if [a| > 17



ACF and PACF

For an AR(1) process, it is easy to obtain
ACF(k) = a¥,

and
a, k=1

PACF(k):{ ol



AR(p) Model

A zero-mean p-th order AR process, x; ~ AR(p), if
Xt = a1Xe—1 + - + apXe—p + €4,

where (e¢) is a white noise and the roots of
1—ajz—---— apzP = 0 are outside the unit circle.



ACF and PACF of AR(p)

For a general AR(p),
» ACF exponentially decays to zero but never reaches zero.
> And there are finite number of nonzero PACF's.
> Question: PACF(1) =a; ?

» AR models are suitable for those processes with “long” ACF
and “short” PACF.



Estimation of AR Models

» OLS. Consistent, robust to the distribution of (), but may
not be efficient.

» MLE. Most efficient under correct specification.
» Yule-Walker Equation



Yule-Walker Method

» The Yule-Walker Equation

Elxe—x(xt — a1xe—1 — -+ — apthp)] =0,k=1,..,p
» AR(1)
m—an=0
» AR(2)

71— a1 — a2
Yo—ay1—axy = 0



Estimation of Covariance

> We estimate v, by

1 n
Ak = E Xt Xt—k-
n—k
t=k+1

> As k increases, 4, becomes less accurate.



Forecasting Based on AR(p)

> 1-step ahead forecast
Xn+1 = A1Xp + 2Xp—1+ -+ + épxn—p-
» 2-step ahead forecast

),\(n+2 = élﬁn-i-l + axp+ -+ épxn—p—i—l‘



Forecast Error for 1-step Ahead Forecast

> If nis large, 3; =~ a;.
» Then
Kn+1 — Xn41 R Entl
» Then
~ ~ _ 2
var(Xp+1 — Xp+1) ~ var(epq1) = 0.



Interval Forecast

If, furthermore, we assume ¢, ~ N(0, 2), then we obtain the 95%
1-step ahead interval forecast,

[%p1 — 1.966, %ns1 + 1.965],

where & is the estimate of o,

1
22 _ 2
6 = 5T d &

t=p+1



Forecast Error for 2-step Ahead Forecast

We have
RXnt2 — Xpy2 R a1€p41 + Enyo.

Hence

var(%n12 — Xns2) = (1 4 a})o.



MA (Moving Average) Models

A g-th order Moving Average model, x ~ MA(p), is defined as

Xt =€t + b1gt—1+ -+ bger—g-



ACF and PACF

» It is obvious that an MA(q) process has finite number of
nonzero ACF's.

» It can be shown that an MA(q) process has infinite number of
nonzero PACF's.

» Hence MA models are suitable for those processes with long
PACF and short ACF.



The Estimation of MA Model

Take MA(1) as an example, x; = £¢ + be;_1, we have

Et = Xt — bEt_l.

» Nonlinear least square.
» MLE, assuming ¢; ~ iid N(0,1).



One-Step Ahead Forecasting Based on MA(1)

» Forecasting based on MA(1), x; = &¢ + bet_1,
)?nJrl = bgnv

where €, must be estimated.

> var(Xp41 — Xny1) = 02



Estimation of ¢,

One procedure for estimating ¢, is as follows,
1. Assume g = 0,
. €1 = X1 — on

2

3. 62:X2—l351
e

5

. En=Xp— bep_1



Two-Step Ahead Forecasting Based on MA(1)

We have
Xp42 = Epg2 + b5n+1-

It is obvious that

E(Xpt2|Xn+1, Xn, -.) = 0.

Hence
)I\(n+2 = 0



ARMA Model

v

ARMA model combines AR and MA together, the following is
an ARMA(1,1) model,

Xt — aX¢—1 = E¢ + bEtfl.

» When |a| < 1, the ARMA(1,1) process is stationary.
» ARMA(p,q) is similarly defined,

Xt — aiXe—1 — -+ — apXe—p = €t + b1€¢—1 + -+ + bger—g.

» When the roots of 1 — a;z — --- — a,zP = 0 are outside the
unit circle, ARMA(p,q) is stationary.

» ARMA has long but rapidly declining ACF and PACF's.



The Estimation of ARMA Model

» Yule-Walker for the AR part.
» Nonlinear least square.
» MLE



Forecasts Based on ARMA

Suppose x; ~ ARMA(1,1),

Xt = aXg—1 + €& + bEtf]_.

» The one-step-ahead forecast is
)?n—&-l = axp + bé,,
» The variance of X1 is given by
° _ 2
var(Xp41 — Xp41) = 0

» Homework: write the two-step-ahead forecast based on
ARMA(1,1) and calculate its variance.



The Selection of Order

> Use significant tests of parameters.
» Information criteria.
» BIC (Bayes Information Criterion)

SSR(p, q)
n

logn
>+(p+q+1) i :

BIC(p, q) = log (

where SSR(p, q) is the SSR of the estimated model.
» AIC (Akaike Information Criterion)

SSR(p. q)
n

BIC(p,q)—log( >+(p+q+1)2

n.



Diagnostics of ARMA Models

> After estimating an ARMA model, we should check whether
the assumptions we made are valid. In particular, we should
check whether the residuals are indeed a white noise.

» Correlogram

» Ljung-Box test, also called Q test,

Q:n(n+2)z .,,

where n is the sample size, p; is the jth-order sample
autocorrelation, and m is the number of lags being tested.
Under the null hypothesis (white noise), Q ~ x2,.



Why do we care about conditional variance?

» For many types of time series (stock return, interest rate
variation, foreign exchange rate variation, etc.), conditional
variance is a measure of risk facing investors.

» Conditional variance is essential for interval forecast.

» Conditional variance is essential for pricing derivatives.



Some Stylized Facts of Financial Returns

» There exists little or weak linear serial correlation in asset
returns.

» The marginal distribution of asset returns is usually skewed
and peaked (heavy-tailed).

» There exists volatility clustering, ie, big changes follow big
changes.



The Log Return of IBM Stock
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The Log Return on SSECI
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The ARCH Model

» ARCH models are introduced to describe volatility clustering.
» An ARCH(p) white noise is defined as

Uy = 0t&y,
where ¢; is an iid white noise and h; satisfies
2

oz :C+31U371+"'+apuffpa (1)

where ¢ >0, a; >0 forall i, and ). a; < 1.



Volatility Clustering

» 02 = var(ut|us_1, us_2, ...) is the conditional variance of u;,

given information available at time t — 1.

» For example, in the following ARCH(1) model, o2 evolves in a
“Markovian” manner,

o?=cHau?;, c>0 0<a<l.

» From the dynamic equation of o2, we can see that big shocks
produce big volatilities ahead. Or, big changes tend to follow
big shocks.

» Conditional variance is also called conditional
heteroscedasticity, ARCH is in fact “AutoRegressive
Conditional Heteroscedasticity” .



Simulated ARCH(1) Processes
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Figure : DGP: u; = o4e;, where €, ~ iidN(0,1) and 02 = 0.01 + au? ;.
The upper panel sets a = 0.5 and the lower panel sets a = 0.95.



Properties of ARCH Processes

(a) Let n: = u? — o2, (n:) is a martingale difference sequence, ie,
E(’nt|ut_1, ug—o, ) =0.

(b) (u?) is an AR(p) process.

(c) (ut) is a white noise with a (unconditional) variance of
var(ug) = c/(1—a1 — -+ — ap).

(d) The (unconditional) distribution of u; is of heavy tails, ie, the
kurtosis of u; is greater than 3.



Heavy Tail

We can show that

v

Eu 1-2°
KurtOSiS(Ut) = (Eljlzt)z = 31 — 3aa2 > 3
t

v

For kurtosis to be positive, a must satisfy a € [0,/3/3).
As a increases, the tail becomes heavier.
When a > +/3/3, the kurtosis ceases to exist.

v

v



GARCH Model

An order-(p, ) GARCH model, or GARCH(p, q), is defined as,
Uy = 0t€y,

where

2
af =c+ aluf,l +F apu?,p + b1U?,1 + o+ bgoi_g-

» ¢c>0,a >0, b; >0 forall /.
> Zmaqu)(a;+b;)<1

» GARCH generalizes ARCH, hence its name, Generalized
ARCH.



Properties

2 2

(a) Let ny = uf — of. (n¢) is a martingale difference sequence, ie,

E(nt|ut71, ug—o, ) =0.
(b) (u?) is an ARMA(p, q) process,

max(p,q) q
u? =c+ Z (a,-+b,-)uf,,-+m—zbf77t4.
i=1 i=1

(c) ut is a white noise, with an (unconditional) variance of
var(we) = ¢/(1 = Y509 (3 + by)).
(d) The (unconditional) distribution of w; is of heavy tails.



Estimation of ARCH and GARCH Models

» MLE
» Methods applicable to the estimation of ARMA models.



Forecasting Variance: One Step Ahead

For one-step-ahead forecast, we have

2 2 2 2 2
Opp1=CHawu,+ -+ apup_p1 +biog + -+ bgon_g11,
where (u2, ...,w? ) and (02,...,02 ) are known at time n
ns ey I‘l*p+1 ns e I‘l*q+1 .
Note that the one-step-ahead forecast is deterministic.



Forecasting Variance: Two Steps Ahead

For two-step-ahead forecasting, we have

6%+2 = c+alE(u3+1|}",,)+agu%+-~-+apu3_p+2+b10,2,+1+b20%—
= c+aui+ - +apui_po+(a1+ bi)on g + b+ + by

For GARCH(1, 1) model, the n-step-ahead forecast can be written
as
52 c(1—(a+b)"?)

0Ten =~ 1_a3_% +(a+b)" ot —

<
l—a—b




Estimating the Volatility

Take GARCH(1,1) as example,

1. Set 02 = —¢&
S 07 1-3-b
A2 A A D T2
2. 6{ = ¢+ auy + bog
3. 63 =¢+au? + bo?



Diagnostics of GARCH Models

1. We should check whether ¢; = g—i is iid.
2. We should first estimate &,

~ Ut
&t = ~-
Ot

3. Test for iid
» Non-correlation: correlogram, Ljung-Box test, etc.

> If normality is assumed, test for normality
» Test on independence.



Time Series Regression Assumptions

(1) Linearity
vt = Bo+ Bixie + - Bixue + ur.
(2) (xt,yt) are jointly stationary and ergodic.
(3) No perfect collinearity.
(4) Past and contemporary exogeneity <

E(Ut|Xt7Xt_]_, ) =0.



Ergodicity

» An ergodic time series (x;) has the property that x; and x;_x
are independent if k is large.

» If (x;) is stationary and ergodic, then a law of large number
holds,

1 n
*th — Ex a.s. .
3



Exogeneity in Time Series Context

» Strict exogeneity.
E(Ut‘X) = E(Ut‘...,Xt_A,_l,Xt,Xt_l, ) =0.
» Past and Contemporary exogeneity.

E(Ut|Xt,Xt_]_, ) =0.



The Puzzling Exogeneity

» US GDP and East Asian Export
» Qil prices and inflation

» Monetary policy and inflation



Consistency of OLS

Under TSR Assumptions (1)-(4), the OLS estimator of the time
series regression is consistent.



Special Cases

» Autoregressive models (AR),
Yt = Bo+ Brye—1+ -+ BpYe—p + Ut
» Autoregressive distributed lag models (ARDL)
Ve = Po+Bryr—1+ -+ BpYe—p T+ V1Xt—1 + -+ VgXe—q + Ut
» Autoregressive models with exogenous variable (ARX)
ye = Bo+ Brye—1+ -+ BpYr—p + 71Xt + -+ VgXe—gt1 + Uz,

where (x;) is past and contemporary exogenous.



Beat OLS in Efficiency

» OLS is consistent, but is not efficient in general.

» u; may be serially correlated and/or heteroscedastic. In such
cases, GLS would be a better alternative.

» A simple way to account for serial correlation is to explicitly
model u; as an ARMA process:

yr = xX'B+ uy,

where uy ~ ARMA(p, q). But OLS is no longer able to
estimate this model. Instead, nonlinear least square or MLE
should be used.



Granger Causality

» Granger causality means that if x causes y, the x is a useful
predictor of y;.

» Granger Causality Test. In the model

Ye=Bo+Bryt-1+ -+ Bpyr—p+r11Xe—1+ + YgXe—q T Ut
We test:
Ho:v1=:-=7v4=0.

» The above test should be more appropriately called a
non-causality test. Or even more precisely, a non-predicting
test.

» Example: Monetary cause of inflation.

T = Bot+Bime—14 A BpTe—p+ 1 MLi_1 4+ - - AygM1i_g+uy.



Two Applications

» Inflation forecast and causality test.
» Estimating CAPM model.



